Никотин әчелеге
Навигациягә күчү
Эзләүгә күчү
Никотин кислотасы (ниацин) холестеринны киметүче препараттан гыйбарәт, аның берничә каршы йогынтысы бар, шуларга тире кызару, кычыту, косасы килү һәм эч авырту керә. Кайбер авыруларда КМШ'га охшаган, ләкин ФАГ'дә үтеп чыгусыз кистоз макулопатия үсеш ала.
Көненә 1,5 г-нан артык дозада макуляр үзгәрешләр күзәтелә, бу күрү үткенлегенең уртача кимүенә китерә һәм препарат туктатылганнан соң юкка чыга.
Искәрмәләр[үзгәртү | вики-текстны үзгәртү]
- ↑ 1,0 1,1 1,2 nicotinic acid
- ↑ Bradley J., Williams A., Andrew S.I.D. Lang Jean-Claude Bradley Open Melting Point Dataset // Figshare — 2014. — doi:10.6084/M9.FIGSHARE.1031637.V2
- ↑ https://www.whocc.no/atc_ddd_index/?code=C10AD02
- ↑ 4,0 4,1 4,2 RxNorm
- ↑ nicotinic acid — EBI.
- ↑ Gardiner N. J., Lakshmanan M., Martínez V. S. et al. Recon 2.2: from reconstruction to model of human metabolism // Metabolomics — Springer Science+Business Media, 2016. — ISSN 1573-3882; 1573-3890 — doi:10.1007/S11306-016-1051-4 — PMID:27358602
- ↑ Soga T. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles // Metabolomics — Springer Science+Business Media, 2012. — ISSN 1573-3882; 1573-3890 — doi:10.1007/S11306-012-0464-Y
- ↑ Zimmermann R., Zechner R. Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. // Atherosclerosis — Elsevier BV, 2008. — ISSN 0021-9150; 1879-1484 — doi:10.1016/J.ATHEROSCLEROSIS.2008.09.015 — PMID:18996527
- ↑ DP Z. Dong quai // Am. J. Chin. Med. — World Scientific, 1987. — ISSN 0192-415X; 1793-6853 — doi:10.1142/S0192415X87000151 — PMID:3425569
- ↑ Upton R. Dong Quai — 2013. — doi:10.1201/B14669-29
- ↑ 11,0 11,1 SJ S., YS H., YP C. et al. Analysis and processing of Chinese herbal drugs; VI. The study of Angelicae radix. // Planta Med. — Thieme Medical Publishers (Germany), 1987. — ISSN 0032-0943; 1439-0221 — doi:10.1055/S-2006-962742 — PMID:3671555
- ↑ Chan Y., Wu T., Kuoh C. S. et al. A new phytoecdysteroid from Ajuga taiwanensis. // Chemical & Pharmaceutical Bulletin — Pharmaceutical Society of Japan, 2005. — ISSN 0009-2363; 1347-5223 — doi:10.1248/CPB.53.836 — PMID:15997147
- ↑ Chan Y., Wu T., Kuoh C. S. et al. A New Phytoecdysteroid from Ajuga taiwanensis. // ChemInform — Wiley Information Services GmbH, Fachinformationszentrum Chemie GmbH (FIZ CHEMIE Berlin), 2005. — ISSN 0931-7597; 1522-2667; 1431-5890 — doi:10.1002/CHIN.200550175
- ↑ Wu P., Lin F., Wu T. et al. Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis. // Chemical & Pharmaceutical Bulletin — Pharmaceutical Society of Japan, 2004. — ISSN 0009-2363; 1347-5223 — doi:10.1248/CPB.52.345 — PMID:14993759
- ↑ Wu P., Lin F., Wu T. et al. Cytotoxic and anti-HIV Principles from the Rhizomes of Begonia nantoensis. // ChemInform — Wiley Information Services GmbH, Fachinformationszentrum Chemie GmbH (FIZ CHEMIE Berlin), 2004. — ISSN 0931-7597; 1522-2667; 1431-5890 — doi:10.1002/CHIN.200434239
- ↑ Tsai T., Wang G., Lin L. Vasorelaxing alkaloids and flavonoids from Cassytha filiformis. // J. Nat. Prod. — American Chemical Society, 2008. — ISSN 0163-3864; 1520-6025 — doi:10.1021/NP070564H — PMID:18217715
- ↑ Hove-Jensen B., Rosenkrantz T. J., Haldimann A. et al. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways // J. Bacteriol. / T. J. Silhavy — Baltimore: ASM, 2003. — ISSN 0021-9193; 1098-5530; 1067-8832 — doi:10.1128/JB.185.9.2793-2801.2003 — PMID:12700258
- ↑ Styczynski M. P. Metabolic Profiling of Escherichia coli-based Cell-Free Expression Systems for Process Optimization // Ind. Eng. Chem. Res. — American Chemical Society, 2019. — ISSN 0888-5885; 1520-5045 — doi:10.1021/ACS.IECR.9B03565 — PMID:32063671
- ↑ Lerman J. A., Nam H., Palsson B. Ø. et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. // Mol. Syst. Biol. / R. Aebersold — EMBO, Wiley, 2011. — ISSN 1744-4292 — doi:10.1038/MSB.2011.65 — PMID:21988831
- ↑ AG S., JB G., DT W. Antifungal and antibacterial metabolites from a sclerotium-colonizing isolate of Mortierella vinacea // J. Nat. Prod. — American Chemical Society, 1999. — ISSN 0163-3864; 1520-6025 — doi:10.1021/NP980411H — PMID:10075797
- ↑ 21,0 21,1 Heim W. G., Sykes K. A., Hildreth S. B. et al. Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. // Phytochemistry — Elsevier BV, 2006. — ISSN 0031-9422; 1873-3700 — doi:10.1016/J.PHYTOCHEM.2006.11.003 — PMID:17174363
- ↑ Saito K., Fukushima A., Kusano M. et al. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach // BMC Syst. Biol. — BMC, Springer Science+Business Media, 2011. — ISSN 1752-0509 — doi:10.1186/1752-0509-5-1 — PMID:21194489
- ↑ Metz T. O., Kim Y., Pasa-Tolic L. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum — [Washington, etc.], USA: National Academy of Sciences [etc.], 2014. — ISSN 0027-8424; 1091-6490 — doi:10.1073/PNAS.1403248111 — PMID:24753604
- ↑ Wurtele E. S., Saito K., Fukushima A. et al. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis // Plant Physiol. — American Society of Plant Biologists, 2014. — ISSN 0032-0889; 1532-2548 — doi:10.1104/PP.114.240986 — PMID:24828308
- ↑ Gupta R. An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits // Front. Plant Sci. — Frontiers Media, 2016. — ISSN 1664-462X — doi:10.3389/FPLS.2016.00994 — PMID:27458475
- ↑ Sokołowska K., Niittylä T., Hvidsten T. R. et al. A metabolite roadmap of the wood-forming tissue in Populus tremula // New Phytologist — London: Wiley-Blackwell, 2020. — ISSN 0028-646X; 1469-8137 — doi:10.1111/NPH.16799 — PMID:32648607
- ↑ Kim Y., Metz T. O., Adkins J. N. et al. Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes // Mol. Biosyst. — RSC, 2013. — ISSN 1742-206X; 1742-2051; 2515-4184 — doi:10.1039/C3MB25598K — PMID:23559334
- ↑ Tian S., Wang C., Li Y. et al. The impact of slyA on cell metabolism of Salmonella Typhimurium: a joint study of transcriptomics and metabolomics // J. Proteome Res. / J. Yates — American Chemical Society, 2020. — ISSN 1535-3893; 1535-3907 — doi:10.1021/ACS.JPROTEOME.0C00281 — PMID:32969666
- ↑ Barrett M. P., Vincent I. M., Burgess K. et al. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei // PLOS Neglected Tropical Diseases / P. J. Hotez — PLoS, 2012. — ISSN 1935-2735; 1935-2727 — doi:10.1371/JOURNAL.PNTD.0001618 — PMID:22563508
- ↑ Chen C., Chang F., Teng C. et al. Cheritamine, A NewN-Fatty Acyl Tryptamine and Other Constituents from the Stems ofAnnona cherimola // Journal of the Chinese Chemical Society — Wiley-Blackwell, 2015. — ISSN 0009-4536; 0375-8745; 2192-6549 — doi:10.1002/JCCS.199900010
- ↑ M.L.C.M.M. Alarcão-E-Silva, A.E.B. Leitão, H.G. Azinheira et al. The Arbutus Berry: Studies on its Color and Chemical Characteristics at Two Mature Stages // J. Food Comp. Anal. — Elsevier BV, 2001. — ISSN 0889-1575; 1096-0481 — doi:10.1006/JFCA.2000.0962
- ↑ 32,0 32,1 WU T., LEU Y., CHAN Y. Constituents of the Leaves of Aristolochia kaempferi. // Chemical & Pharmaceutical Bulletin — Pharmaceutical Society of Japan, 2011. — ISSN 0009-2363; 1347-5223 — doi:10.1248/CPB.46.1624
- ↑ M Gallagher, Brown W. D. Composition of San Francisco bay brine shrimp (Artemia salina) // J. Agric. Food Chem. — USA: American Chemical Society, 1975. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF60200A008 — PMID:1141506
- ↑ 34,0 34,1 34,2 34,3 34,4 34,5 34,6 34,7 34,8 HEWITT W., VINCENT S. MICROBIOLOGICAL ASSAY: AN OVERVIEW — 2014. — doi:10.1016/B978-0-12-346445-3.50005-2
- ↑ Liu B., Qin F. Two New Triterpenoids from the Roots of Codonopsis pilosula // Molecules — MDPI, 2018. — ISSN 1420-3049; 1431-5157 — doi:10.3390/MOLECULES23020383 — PMID:29439445
- ↑ 36,0 36,1 S. Casal, Oliveira M. B., Ferreira M. A. Development of an HPLC/Diode-Array Detector Method for Simultaneous Determination of Trigonelline, Nicotinic Acid, and Caffeine in Coffee // Journal of Liquid Chromatography and Related Technologies — Marcel Dekker, Taylor & Francis, 1998. — ISSN 1082-6076; 1520-572X; 0148-3919 — doi:10.1080/10826079808001267
- ↑ Jr R. F. A neglected Mayan galactagogue - ixbut (Euphorbia lancifolia). // J. Ethnopharmacol. — Elsevier BV, 1982. — ISSN 0378-8741; 1872-7573 — doi:10.1016/0378-8741(82)90024-1 — PMID:7033669
- ↑ Vedrina-Dragojević I. Dynamics of the Biosynthesis of Niacin During Development to Maturity of Soybean Seed // Journal of Agronomy and Crop Science — 2008. — ISSN 0931-2250; 1439-037X — doi:10.1111/J.1439-037X.1991.TB00948.X
- ↑ Manceau F., Fliniaux M., Jacquin-Dubreuil A. A high performance liquid chromatographic procedure for the analysis of tobacco alkaloids--Application to the evaluation of tobacco alkaloids in plants and cell suspension cultures // Phytochem. Anal. — Wiley, 2007. — ISSN 0958-0344; 1099-1565 — doi:10.1002/PCA.2800030205
- ↑ Schwenen L., Komoßa D., Barz W. Metabolism and Degradation of Nicotinic Acid in Parsley (Petroselinum hortense) Cell Suspension Cultures and Seedlings // Z. Naturforsch. C Bio. Sci. / J. Seibel — Walter de Gruyter, 2018. — ISSN 0939-5075; 1865-7125 — doi:10.1515/ZNC-1986-1-222
- ↑ Barrero A. F., Oltra J. E., Poyatos J. A. Acidic metabolites from Phycomyces blakesleeanus // Phytochemistry — Elsevier BV, 2003. — ISSN 0031-9422; 1873-3700 — doi:10.1016/0031-9422(96)00146-X
- ↑ Tramontano W. A., Lynn D. G., Evans L. S. Trigonelline, nicotinic acid and nicotinamide in seedlings of Pisum sativum // Phytochemistry — Elsevier BV, 2002. — ISSN 0031-9422; 1873-3700 — doi:10.1016/S0031-9422(00)86960-5
- ↑ N Saleh, Z El-Hawary, El-Shobaki F. A. et al. Vitamins content of fruits and vegetables in common use in Egypt. // European Journal of Nutrition — Springer Science+Business Media, 1977. — ISSN 1436-6207; 1436-6215; 0044-264X; 1435-1293 — doi:10.1007/BF02024787 — PMID:919638
- ↑ Bushway A. A., Bureau J. L., Bergeron D. et al. The nutrient and glycoalkaloid content of a new potato meal // American Journal of Potato Research — Springer Science+Business Media, 2008. — ISSN 1099-209X; 0003-0589; 1874-9380 — doi:10.1007/BF02854349
- ↑ Yang M., Kuo P., Hwang T. et al. Anti-inflammatory principles from Cordyceps sinensis // J. Nat. Prod. — American Chemical Society, 2011. — ISSN 0163-3864; 1520-6025 — doi:10.1021/NP100902F — PMID:21848266
- ↑ D.K. Holdsworth, R.A. Jones, R. Self Volatile alkaloids from Areca catechu // Phytochemistry — Elsevier BV, 2003. — ISSN 0031-9422; 1873-3700 — doi:10.1016/S0031-9422(98)00016-8
- ↑ Kuo P., Damu A. G., Lee K. et al. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia. // Bioorganic & Medicinal Chemistry — Elsevier BV, 2004. — ISSN 0968-0896; 1464-3391 — doi:10.1016/J.BMC.2003.11.017 — PMID:14738962
- ↑ Viladomat F., Bastida J., Kaiser M. Antiprotozoal alkaloids from Galanthus trojanus // Phytochemistry Letters — Elsevier BV, 2011. — ISSN 1874-3900; 1876-7486 — doi:10.1016/J.PHYTOL.2011.05.008
- ↑ 49,0 49,1 49,2 49,3 Kuo P., Kuo T., Su C. et al. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida // Tetrahedron — Elsevier BV, 2008. — ISSN 0040-4020; 1464-5416 — doi:10.1016/J.TET.2008.01.090
- ↑ Hu S. H., Liang Z. C., Chia Y. C. et al. Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus // J. Agric. Food Chem. — USA: American Chemical Society, 2006. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF052890D — PMID:16536582
- ↑ Wilinski D., Freddolino P. L. Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster // Nat. Commun. / J. Heber — NPG, 2019. — ISSN 2041-1723 — doi:10.1038/S41467-019-11933-Z — PMID:31492856
- ↑ Fang Z., Jeong S. Y., Jung H. A. et al. Anticholinesterase and antioxidant constituents from Gloiopeltis furcata. // Chemical & Pharmaceutical Bulletin — Pharmaceutical Society of Japan, 2010. — ISSN 0009-2363; 1347-5223 — doi:10.1248/CPB.58.1236 — PMID:20823607
- ↑ Zhao Y. 1β-hydroxylfriedelin, a new natural pentacylic triterpene from the sclerotia of Polyporus umbellatus // Journal of Chemical Research — 2009. — ISSN 0308-2342; 1364-5560; 0308-2350; 1747-5198 — doi:10.3184/030823409X12562954717147
- ↑ Yu W., Li D., Li H. et al. Absence of tmRNA Increases the Persistence to Cefotaxime and the Intercellular Accumulation of Metabolite GlcNAc in Aeromonas veronii // Frontiers in cellular and infection microbiology — Frontiers Media, 2020. — ISSN 2235-2988 — doi:10.3389/FCIMB.2020.00044 — PMID:32185140
- ↑ Goufo P., Cortez I. Dataset of levels and masses of lipid species in healthy, asymptomatic and symptomatic leaves of vitis vinifera L. 'Malvasia fina' affected by ESCA complex disease // DIB — Elsevier BV, 2020. — ISSN 2352-3409 — doi:10.1016/J.DIB.2020.106469 — PMID:33204780
- ↑ BUSHWAY A. A., SERREZE D. V., McGANN D. F. et al. Effect of Processing Method and Storage Time on the Nutrient Composition of Fiddlehead Greens // Journal of Food Science — Institute of Food Technologists, 2006. — ISSN 0022-1147; 1750-3841 — doi:10.1111/J.1365-2621.1985.TB10508.X
- ↑ 57,0 57,1 NDF-RT
- ↑ 58,0 58,1 58,2 IUPHAR/BPS Guide to PHARMACOLOGY
Чыганаклар[үзгәртү | вики-текстны үзгәртү]
- Джек Кански. Клиник офтальмология. Системалаштырылган караш. / редакторлар: Еричева В.П.. — 2009. — Б. 944. — ISBN 83-7609-034-8.