ATM (ген)

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/ATM (ген) latin yazuında])
ATM
Сурәт
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген ATM[d][1]
Молекулярная функция трансферазная активность[d][2], ДНК-связывающий[d][2], нуклеотид-связывающий[d][2], protein kinase activity[d][2], DNA-dependent protein kinase activity[d][3], protein dimerization activity[d][3], protein N-terminus binding[d][4], 1-phosphatidylinositol-3-kinase activity[d][4], kinase activity[d][2][2], protein serine/threonine kinase activity[d][5][5][5][…], связывание с белками плазмы[d][6][4][7][…], АТФ-связанные[d][2], protein-containing complex binding[d][3] һәм protein serine/threonine kinase activity[d][2][2][2][…]
Күзәнәк компоненты Цитоплазма[2], DNA repair complex[d][8], Веретено деления[d][2], нуклеоплазма[d][2], Теломеры[d][9], цитоплазматическая везикула[d][2], Төш[5][5][10], ядрышко[d][11] һәм Төш[2][2][12][…]
Биологический процесс somitogenesis[d][2], response to ionizing radiation[d][2][2][4][…], neuron apoptotic process[d][2], reciprocal meiotic recombination[d][13], DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest[d][2], response to hypoxia[d][2], female gamete generation[d][2], determination of adult lifespan[d][2], фосфорилирование[d][2], establishment of protein-containing complex localization to telomere[d][14], meiotic telomere clustering[d][2], peptidyl-serine autophosphorylation[d][15], DNA damage checkpoint signaling[d][5], regulation of telomerase activity[d][16], positive regulation of telomerase catalytic core complex assembly[d][14], positive regulation of telomere maintenance via telomerase[d][2][2], positive regulation of neuron death[d][2], mitotic spindle assembly checkpoint signaling[d][17], oocyte development[d][2], lipoprotein catabolic process[d][2], regulation of cell cycle[d][2], фосфорилация белка[d][18][2][19], развитие сердца[d][2], развитие мозга[d][2], positive regulation of neuron apoptotic process[d][2], negative regulation of telomere capping[d][18], positive regulation of telomere maintenance via telomere lengthening[d][16][18], peptidyl-serine phosphorylation[d][12][20], cellular response to gamma radiation[d][21][22], intrinsic apoptotic signaling pathway in response to DNA damage[d][5], V(D)J-рекомбинация[d][2], positive regulation of apoptotic process[d][23], regulation of cellular response to heat[d][2], pre-B cell allelic exclusion[d][2][2], клеточный цикл[d][2], histone mRNA catabolic process[d][24], cellular response to nitrosative stress[d][25], positive regulation of DNA damage response, signal transduction by p53 class mediator[d][20], double-strand break repair via nonhomologous end joining[d][2], negative regulation of B cell proliferation[d][23], передача сигнала[d][13], establishment of RNA localization to telomere[d][14], апоптоз[d][2], Репликация ДНК[d][2], DNA double-strand break processing[d][2], regulation of signal transduction by p53 class mediator[d][2], regulation of autophagy[d][25][2], phosphatidylinositol-3-phosphate biosynthetic process[d][2], cellular response to X-ray[d][12], double-strand break repair via homologous recombination[d][2], regulation of apoptotic process[d][2], negative regulation of TORC1 signaling[d][26][5], ovarian follicle development[d][2], immune system process[d][2], immunoglobulin production[d][2], DNA damage induced protein phosphorylation[d][27][20], male meiotic nuclear division[d][2], female meiotic nuclear division[d][2], развитие яичников[d][2], post-embryonic development[d][2], multicellular organism growth[d][2], protein autophosphorylation[d][27][20][3], thymus development[d][2], chromosome organization involved in meiotic cell cycle[d][2], репарация ДНК[d][5][5], cellular response to DNA damage stimulus[d][28][29][30][…], regulation of telomere maintenance via telomerase[d][14], positive regulation of DNA catabolic process[d][2], regulation of microglial cell activation[d][2], regulation of cellular response to gamma radiation[d][2], positive regulation of response to DNA damage stimulus[d][2], telomere maintenance[d][5], replicative senescence[d][9][2], pre-B cell allelic exclusion[d][2], фосфорилация белка[d][18][19], regulation of autophagy[d][25], positive regulation of telomere maintenance via telomerase[d][2], negative regulation of TORC1 signaling[d][26], DNA damage checkpoint signaling[d][2][2][31], telomere maintenance[d][2][31], репарация ДНК[d][2][2], cellular response to DNA damage stimulus[d][23][15][3][…], intrinsic apoptotic signaling pathway in response to DNA damage[d][31], positive regulation of gene expression[d][32], positive regulation of cell migration[d][32], positive regulation of cell adhesion[d][2], положительная регуляция транскрипции РНК полимеразой II промотор[d][2], cellular response to retinoic acid[d][2], negative regulation of TORC1 signaling[d][25][31], intrinsic apoptotic signaling pathway in response to DNA damage[d][2][31], positive regulation of cell adhesion[d][2][2], положительная регуляция транскрипции РНК полимеразой II промотор[d][2][2], cellular response to retinoic acid[d][2][2], replicative senescence[d][9] һәм negative regulation of TORC1 signaling[d][25][2][31]

ATM (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[33][34]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,60 2,61 2,62 2,63 2,64 2,65 2,66 2,67 2,68 2,69 2,70 2,71 2,72 2,73 2,74 2,75 2,76 2,77 2,78 2,79 2,80 2,81 2,82 GOA
  3. 3,0 3,1 3,2 3,3 3,4 Lee J., Paull T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex // Science / H. ThorpAAAS, 2005. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.1108297PMID:15790808
  4. 4,0 4,1 4,2 4,3 S Kishi, Zhou X. Z., Y Ziv et al. Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M011534200PMID:11375976
  5. 5,00 5,01 5,02 5,03 5,04 5,05 5,06 5,07 5,08 5,09 5,10 GOA
  6. Aglipay J. A., Martin S. A., Tawara H. et al. ATM activation by ionizing radiation requires BRCA1-associated BAAT1 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2006. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M510332200PMID:16452482
  7. Horejsí Z., Flynn H., Collis S. J. et al. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability // Mol. CellCell Press, Elsevier BV, 2010. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2010.08.037PMID:20864032
  8. Harper J. W., Gygi S. P. The histone demethylase LSD1/KDM1A promotes the DNA damage response // J. Cell Biol. / J. NunnariRockefeller University Press, 2013. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.201302092PMID:24217620
  9. 9,0 9,1 9,2 Sedivy J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a) // Mol. CellCell Press, Elsevier BV, 2004. — ISSN 1097-2765; 1097-4164doi:10.1016/S1097-2765(04)00256-4PMID:15149599
  10. Zhao W., Groesser T., Dray E. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability // Nucleic Acids Res.OUP, University of Oxford, 2015. — ISSN 0305-1048; 1362-4962; 1362-4954doi:10.1093/NAR/GKV859PMID:26323318
  11. Chen H., Han L., Tsai H. et al. PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway // Oncotarget / M. BlagosklonnyImpact Journals LLC, 2016. — ISSN 1949-2553doi:10.18632/ONCOTARGET.13082PMID:27829214
  12. 12,0 12,1 12,2 Zhao W., Groesser T., Dray E. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability // Nucleic Acids Res.OUP, University of Oxford, 2015. — ISSN 0305-1048; 1362-4962; 1362-4954doi:10.1093/NAR/GKV859PMID:26323318
  13. 13,0 13,1 Collins F. A single ataxia telangiectasia gene with a product similar to PI-3 kinase // Science / H. ThorpAAAS, 1995. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.7792600PMID:7792600
  14. 14,0 14,1 14,2 14,3 Zhu X., Lange T. d., Sfeir A. et al. ATM and ATR Signaling Regulate the Recruitment of Human Telomerase to Telomeres // Cell ReportsCell Press, Elsevier BV, 2015. — ISSN 2211-1247; 2639-1856doi:10.1016/J.CELREP.2015.10.041PMID:26586433
  15. 15,0 15,1 Huggins D., Jeyasekharan A. D. PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2014. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1317585111PMID:24550317
  16. 16,0 16,1 Greider C. W. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells // Cell ReportsCell Press, Elsevier BV, 2015. — ISSN 2211-1247; 2639-1856doi:10.1016/J.CELREP.2015.10.035PMID:26586427
  17. Nakamura M., Zhou X. Z., Kishi S. et al. Involvement of the telomeric protein Pin2/TRF1 in the regulation of the mitotic spindle // FEBS LettersElsevier BV, 2002. — ISSN 0014-5793; 1873-3468doi:10.1016/S0014-5793(02)02363-3PMID:11943150
  18. 18,0 18,1 18,2 18,3 Zhu X., Wu Y. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control // Nat. Struct. Mol. Biol.USA: NPG, 2007. — ISSN 1545-9993; 1545-9985doi:10.1038/NSMB1286PMID:17694070
  19. 19,0 19,1 Ronai Z., Takahashi S. ATM-dependent phosphorylation of ATF2 is required for the DNA damage response // Mol. CellCell Press, Elsevier BV, 2005. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2005.04.015PMID:15916964
  20. 20,0 20,1 20,2 20,3 K Tamai, Siliciano J. D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 // Science / H. ThorpAAAS, 1998. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.281.5383.1677PMID:9733515
  21. Takagi M., Absalon M. J., McLure K. G. et al. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin // CellCell Press, Elsevier BV, 2005. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2005.07.034PMID:16213212
  22. Tibbetts R. S., Brumbaugh K. M., Williams J. M. et al. A role for ATR in the DNA damage-induced phosphorylation of p53 // Genes Dev.Cold Spring Harbor Laboratory Press, 1999. — ISSN 0890-9369; 1549-5477doi:10.1101/GAD.13.2.152PMID:9925639
  23. 23,0 23,1 23,2 Armitage J. O., Vose J. M., Bierman P. J. et al. ATM, CTLA4, MNDA, and HEM1 in high versus low CD38 expressing B-cell chronic lymphocytic leukemia // Clin. Cancer Res. / K. FlahertyAmerican Association for Cancer Research, 2007. — ISSN 1078-0432; 1557-3265doi:10.1158/1078-0432.CCR-07-0283PMID:17875758
  24. Marzluff W. F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1 // Nat. Struct. Mol. Biol.USA: NPG, 2005. — ISSN 1545-9993; 1545-9985doi:10.1038/NSMB972PMID:16086026
  25. 25,0 25,1 25,2 25,3 25,4 Tripathi D. N., Chowdhury R., Trudel L. J. et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1 // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2013. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1307736110PMID:23878245
  26. 26,0 26,1 Tripathi D. N., Chowdhury R., Trudel L. J. et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1 // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2013. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1307736110PMID:23878245
  27. 27,0 27,1 Carranza D., Martinez-Gonzalez L. J., Molina I. J. Molecular and Functional Characterization of a Cohort of Spanish Patients with Ataxia-Telangiectasia // Neuromol. Med.Springer Science+Business Media, 2016. — ISSN 1535-1084; 1559-1174doi:10.1007/S12017-016-8440-8PMID:27664052
  28. Armitage J. O., Vose J. M., Bierman P. J. et al. ATM, CTLA4, MNDA, and HEM1 in high versus low CD38 expressing B-cell chronic lymphocytic leukemia // Clin. Cancer Res. / K. FlahertyAmerican Association for Cancer Research, 2007. — ISSN 1078-0432; 1557-3265doi:10.1158/1078-0432.CCR-07-0283PMID:17875758
  29. Huggins D., Jeyasekharan A. D. PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2014. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1317585111PMID:24550317
  30. Lee J., Paull T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex // Science / H. ThorpAAAS, 2005. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.1108297PMID:15790808
  31. 31,0 31,1 31,2 31,3 31,4 31,5 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  32. 32,0 32,1 Chen S., Zhang J., Chen J. et al. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study. // Int. J. Biol. Macromolec.Elsevier BV, 2017. — ISSN 0141-8130; 1879-0003doi:10.1016/J.IJBIOMAC.2017.03.123PMID:28344092
  33. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  34. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)