CDKN1A

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/CDKN1A latin yazuında])
CDKN1A
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген CDKN1A[d][1]
Молекулярная функция связывание с ионом металла[d][2], связывание с белками плазмы[d][3][4][5][…], cyclin-dependent protein serine/threonine kinase inhibitor activity[d][2][6][7][…], ubiquitin protein ligase binding[d][8], cyclin binding[d][2], cyclin-dependent protein kinase activating kinase activity[d][9], cyclin-dependent protein serine/threonine kinase activity[d][10], protein kinase inhibitor activity[d][11][2], protein kinase binding[d][11] һәм protein-containing complex binding[d][11][2]
Күзәнәк компоненты Цитоплазма[2][2], цитозоль[d][2][2], cyclin-dependent protein kinase holoenzyme complex[d][2][12], PCNA-p21 complex[d][4], perinuclear region of cytoplasm[d][2], Төш[2][2][2][…], нуклеоплазма[d][2][13][2], ядрышко[d][13], ядерные тельца[d][2], protein-containing complex[d][13], cyclin-dependent protein kinase holoenzyme complex[d][12] һәм цитозоль[d][2]
Биологический процесс cellular response to extracellular stimulus[d][14], signal transduction by p53 class mediator[d][2], intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator[d][2], cellular response to heat[d][2], regulation of cyclin-dependent protein serine/threonine kinase activity[d][6][2], DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest[d][2][15], positive regulation of cell death[d][2], response to organic cyclic compound[d][2], negative regulation of cyclin-dependent protein serine/threonine kinase activity[d][2], stress-induced premature senescence[d][16], positive regulation of fibroblast proliferation[d][12], replicative senescence[d][2], response to hyperoxia[d][2], response to corticosterone[d][2], cellular response to amino acid starvation[d][17][2], positive regulation of programmed cell death[d][2], негативная регуляция апоптоза[d][2], response to glucocorticoid[d][2], response to arsenic-containing substance[d][2], regulation of DNA biosynthetic process[d][2], response to organic substance[d][2], negative regulation of gene expression[d][2], cellular response to DNA damage stimulus[d][16][2], negative regulation of G1/S transition of mitotic cell cycle[d][18], regulation of cell cycle[d][2], intrinsic apoptotic signaling pathway[d][19], клеточное старение[d][15], positive regulation of reactive oxygen species metabolic process[d][16][2], cellular response to UV-B[d][2][2], G2/M transition of mitotic cell cycle[d][14], positive regulation of B cell proliferation[d][2], negative regulation of cell growth[d][20], response to organonitrogen compound[d][2], регенерация органов[d][2], regulation of mitotic cell cycle[d][2], intestinal epithelial cell maturation[d][2], cellular response to ionizing radiation[d][16][2], клеточный цикл[d][2], Ras protein signal transduction[d][21], negative regulation of phosphorylation[d][20], response to toxic substance[d][2], response to UV[d][2], response to X-ray[d][2], негативная регуляция пролиферации клеток[d][22][14][2][…], protein stabilization[d][2], positive regulation of cyclin-dependent protein kinase activity[d][2], regulation of transcription by RNA polymerase II[d][2], DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator[d][2], positive regulation of protein kinase activity[d][13], cellular response to gamma radiation[d][2], negative regulation of cyclin-dependent protein kinase activity[d][11], transcription initiation from RNA polymerase II promoter[d][2], G1/S transition of mitotic cell cycle[d][2][20], cytokine-mediated signaling pathway[d][2], negative regulation of vascular associated smooth muscle cell proliferation[d][23], regulation of cyclin-dependent protein serine/threonine kinase activity[d][6], негативная регуляция пролиферации клеток[d][22][14][20][…], cellular response to amino acid starvation[d][17] һәм cellular response to UV-B[d][2]

CDKN1A (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[24][25]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,60 2,61 GOA
  3. Esteve-Puig R., Bech-Serra J. J., Hernandez-Losa J. et al. A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation // PLOS GeneticsPLoS, 2014. — ISSN 1553-7390; 1553-7404doi:10.1371/JOURNAL.PGEN.1004721PMID:25329316
  4. 4,0 4,1 Pagano M., Dutta A., Pagano M. et al. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex // Genes Dev.Cold Spring Harbor Laboratory Press, 2008. — ISSN 0890-9369; 1549-5477doi:10.1101/GAD.1676108PMID:18794347
  5. Hainsworth E., LaBaer J. Self-assembling protein microarrays // Science / H. ThorpAAAS, 2004. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.1097639PMID:15232106
  6. 6,0 6,1 6,2 K Keyomarsi The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases // CellCell Press, Elsevier BV, 1993. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(93)90499-GPMID:8242751
  7. Leonardo A. D. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts // Genes Dev.Cold Spring Harbor Laboratory Press, 1994. — ISSN 0890-9369; 1549-5477doi:10.1101/GAD.8.21.2540PMID:7958916
  8. Zhi X., Zhao D., Wang Z. et al. E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation // Cancer Res. / G. C. PrendergastAmerican Association for Cancer Research, 2013. — ISSN 0008-5472; 1538-7445doi:10.1158/0008-5472.CAN-12-0562PMID:23026136
  9. J LaBaer, Garrett M. D., Stevenson L. F. et al. New functional activities for the p21 family of CDK inhibitors // Genes Dev.Cold Spring Harbor Laboratory Press, 1997. — ISSN 0890-9369; 1549-5477doi:10.1101/GAD.11.7.847PMID:9106657
  10. L. Connell-Crowley, Harper J. W., Goodrich D. W. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation // Mol. Biol. Cell,American Society for Cell Biology, 1997. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.8.2.287PMID:9190208
  11. 11,0 11,1 11,2 11,3 Kriwacki R. W., L. Hengst, L. Tennant et al. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1996. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.93.21.11504PMID:8876165
  12. 12,0 12,1 12,2 Ruas M., Gregory F., Jones R. et al. CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms // Mol. Cell. Biol.ASM, 2007. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.02286-06PMID:17420273
  13. 13,0 13,1 13,2 13,3 Gyorffy B., Kiaris H. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2012. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1206906109PMID:22869755
  14. 14,0 14,1 14,2 14,3 Wall S. J., Zhong Z., DeClerck Y. A. The cyclin-dependent kinase inhibitors p15INK4B and p21CIP1 are critical regulators of fibrillar collagen-induced tumor cell cycle arrest // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2007. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M702697200PMID:17553787
  15. 15,0 15,1 Sedivy J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a) // Mol. CellCell Press, Elsevier BV, 2004. — ISSN 1097-2765; 1097-4164doi:10.1016/S1097-2765(04)00256-4PMID:15149599
  16. 16,0 16,1 16,2 16,3 Nelson G., Simillion C., Proctor C. J. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence // Mol. Syst. Biol. / R. AebersoldEMBO, Wiley, 2010. — ISSN 1744-4292doi:10.1038/MSB.2010.5PMID:20160708
  17. 17,0 17,1 Ye J., Koumenis C. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress // PLOS GeneticsPLoS, 2015. — ISSN 1553-7390; 1553-7404doi:10.1371/JOURNAL.PGEN.1005212PMID:26102367
  18. Dutta A., Abbas T., Shibata E. et al. Selective ubiquitylation of p21 and Cdt1 by UBCH8 and UBE2G ubiquitin-conjugating enzymes via the CRL4Cdt2 ubiquitin ligase complex // Mol. Cell. Biol.ASM, 2011. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.05496-11PMID:21628527
  19. B Levkau, H Koyama, Raines E. W. et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade // Mol. CellCell Press, Elsevier BV, 1998. — ISSN 1097-2765; 1097-4164doi:10.1016/S1097-2765(00)80055-6PMID:9660939
  20. 20,0 20,1 20,2 20,3 M Schreiber, Muller W. J., G Singh et al. Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21(WAF1/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity // OncogeneNPG, 1999. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1202466PMID:10208428
  21. M Serrano Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a // CellCell Press, Elsevier BV, 1997. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(00)81902-9PMID:9054499
  22. 22,0 22,1 Verdin E. HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism // OncogeneNPG, 2008. — ISSN 0950-9232; 1476-5594doi:10.1038/ONC.2008.371PMID:18850004
  23. Brock M., Trenkmann M., Ulrich S. The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A // Int. J. Biochem. Cell Biol.Elsevier BV, 2015. — ISSN 1357-2725; 0020-711X; 1878-5875doi:10.1016/J.BIOCEL.2015.02.002PMID:25681685
  24. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  25. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)