FOXO3

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/FOXO3 latin yazuında])
FOXO3
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген FOXO3[d][1]
Молекулярная функция beta-catenin binding[d][2], DNA-binding transcription activator activity, RNA polymerase II-specific[d][3], связывание с белками плазмы[d][4][5][6][…], protein kinase binding[d][7][8][9], chromatin DNA binding[d][3][3], DNA-binding transcription factor activity[d][10][10][11], sequence-specific DNA binding[d][10][10][12], ДНК-связывающий[d][3][3][9], DNA-binding transcription repressor activity, RNA polymerase II-specific[d][3][13], DNA-binding transcription factor activity, RNA polymerase II-specific[d][14][10], mitochondrial transcription factor activity[d][5][3], transcription coregulator binding[d][3], RNA polymerase II cis-regulatory region sequence-specific DNA binding[d][3][3], DNA-binding transcription factor activity, RNA polymerase II-specific[d][15][3][16], DNA-binding transcription factor activity[d][3][3][17][…], transcription factor binding[d][16] һәм sequence-specific DNA binding[d][3][3][18][…]
Күзәнәк компоненты мембрана[d][3][3], нуклеоплазма[d][3][3], цитозоль[d][3][3][3][…], Цитоплазма[10][10][19][…], Төш[20][10][10][…], митохондрия[d][3][3][4], mitochondrial outer membrane[d][3][3][5], Митохондриальный матрикс[d][3][3][5], protein-containing complex[d][3][4][5], Төш[5][3][3][…] һәм Цитоплазма[3][3][4][…]
Биологический процесс initiation of primordial ovarian follicle growth[d][3], ovulation from ovarian follicle[d][3], ДНК-зависимая регуляция транскрипции[d][3][3], antral ovarian follicle growth[d][3], positive regulation of erythrocyte differentiation[d][17], glucose homeostasis[d][10], DNA damage response, signal transduction by p53 class mediator[d][3], tumor necrosis factor-mediated signaling pathway[d][21], regulation of reactive oxygen species metabolic process[d][3], transcription by RNA polymerase II[d][10], regulation of neural precursor cell proliferation[d][3], транскрипция, ДНК-зависимая[d][10], neuronal stem cell population maintenance[d][3], positive regulation of neuron apoptotic process[d][18], oocyte maturation[d][3], extrinsic apoptotic signaling pathway in absence of ligand[d][3], positive regulation of apoptotic process[d][13], regulation of translation[d][9], negative regulation of canonical Wnt signaling pathway[d][3], апоптоз[d][3][3], negative regulation of transcription by RNA polymerase II[d][22][23], regulation of transcription by RNA polymerase II[d][3][3], положительная регуляция транскрипции РНК полимеразой II промотор[d][10][12][11], cellular response to oxidative stress[d][3][3], ДНК-зависимая позитивная регуляция транскрипции[d][3][18][21], positive regulation of reactive oxygen species biosynthetic process[d][3], brain morphogenesis[d][3], старение человека[d][3], negative regulation of neuron differentiation[d][3], cellular response to hypoxia[d][3], response to water-immersion restraint stress[d][3], response to nutrient levels[d][3], cellular response to amyloid-beta[d][3], cellular response to corticosterone stimulus[d][3], positive regulation of endothelial cell apoptotic process[d][3], positive regulation of hydrogen peroxide-mediated programmed cell death[d][3], response to dexamethasone[d][3], cellular response to nerve growth factor stimulus[d][3], cellular response to glucose stimulus[d][3], морфогенез анатомической структуры[d][10], cytokine-mediated signaling pathway[d][3], mitochondrial transcription[d][5][3], negative regulation of cell migration[d][24], negative regulation of transcription by RNA polymerase II[d][25][13][16], insulin receptor signaling pathway[d][16], glucose homeostasis[d][3][16], положительная регуляция транскрипции РНК полимеразой II промотор[d][3][18][17][…], positive regulation of autophagy[d][3][3], positive regulation of muscle atrophy[d][3][3] һәм response to starvation[d][3][3]

FOXO3 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[26][27]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. Essers M. Functional interaction between beta-catenin and FOXO in oxidative stress signaling // Science / H. ThorpAAAS, 2005. — 4 p. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.1109083PMID:15905404
  3. 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 3,11 3,12 3,13 3,14 3,15 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,27 3,28 3,29 3,30 3,31 3,32 3,33 3,34 3,35 3,36 3,37 3,38 3,39 3,40 3,41 3,42 3,43 3,44 3,45 3,46 3,47 3,48 3,49 3,50 3,51 3,52 3,53 3,54 3,55 3,56 3,57 3,58 3,59 3,60 3,61 3,62 3,63 3,64 3,65 3,66 3,67 3,68 3,69 3,70 3,71 3,72 3,73 3,74 3,75 GOA
  4. 4,0 4,1 4,2 4,3 Ryall J. G., Peserico A., Chiacchiera F. et al. A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels // Cell Mol Life SciBirkhäuser, Springer Science+Business Media, 2013. — ISSN 1420-9071; 1420-682Xdoi:10.1007/S00018-012-1244-6PMID:23283301
  5. 5,0 5,1 5,2 5,3 5,4 5,5 5,6 Tezil T., Fasano C., Peserico A. et al. Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy. // Cell Death Dis.London: Nature Publishing Group, 2018. — ISSN 2041-4889doi:10.1038/S41419-018-0336-0PMID:29445193
  6. Kong D. K., Georgescu S. P., Cano C. et al. Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function // Mol. Biol. Cell,American Society for Cell Biology, 2010. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.E09-09-0818PMID:20181828
  7. Yang Y., Villén J., Esther B.E. Becker et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span // CellCell Press, Elsevier BV, 2006. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2006.03.046PMID:16751106
  8. Katayama R. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels // Cancer Res. / G. C. PrendergastAmerican Association for Cancer Research, 2008. — ISSN 0008-5472; 1538-7445doi:10.1158/0008-5472.CAN-08-0634PMID:18593906
  9. 9,0 9,1 9,2 Rosenwald A., Gaestel M., Cannell I. G. et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis // Mol. CellCell Press, Elsevier BV, 2011. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2011.01.023PMID:21329882
  10. 10,00 10,01 10,02 10,03 10,04 10,05 10,06 10,07 10,08 10,09 10,10 10,11 10,12 10,13 GOA
  11. 11,0 11,1 Löwenberg B. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1 // J. Cell Biol. / J. NunnariRockefeller University Press, 2004. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200307056PMID:14734530
  12. 12,0 12,1 A Brunet, A Bonni, Zigmond M. J. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor // CellCell Press, Elsevier BV, 1999. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(00)80595-4PMID:10102273
  13. 13,0 13,1 13,2 Wang K., Li P. Foxo3a regulates apoptosis by negatively targeting miR-21 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2010. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M109.093005PMID:20371612
  14. Vaquerizas J. M., Teichmann S., Kummerfeld S. K. A census of human transcription factors: function, expression and evolution // Nature reviews. GeneticsUK: NPG, 2009. — ISSN 1471-0056; 1471-0064doi:10.1038/NRG2538PMID:19274049
  15. Vaquerizas J. M., Teichmann S., Kummerfeld S. K. A census of human transcription factors: function, expression and evolution // Nature reviews. GeneticsUK: NPG, 2009. — ISSN 1471-0056; 1471-0064doi:10.1038/NRG2538PMID:19274049
  16. 16,0 16,1 16,2 16,3 16,4 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  17. 17,0 17,1 17,2 Löwenberg B. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1 // J. Cell Biol. / J. NunnariRockefeller University Press, 2004. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200307056PMID:14734530
  18. 18,0 18,1 18,2 18,3 A Brunet, A Bonni, Zigmond M. J. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor // CellCell Press, Elsevier BV, 1999. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(00)80595-4PMID:10102273
  19. Hung M. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a // CellCell Press, Elsevier BV, 2004. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(04)00302-2PMID:15084260
  20. Tezil T., Fasano C., Peserico A. et al. Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy. // Cell Death Dis.London: Nature Publishing Group, 2018. — ISSN 2041-4889doi:10.1038/S41419-018-0336-0PMID:29445193
  21. 21,0 21,1 Hung M. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a // CellCell Press, Elsevier BV, 2004. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(04)00302-2PMID:15084260
  22. Patterson C., Bode C., Augustin H. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis // Circ. Res.Lippincott Williams & Wilkins, 2008. — ISSN 0009-7330; 1524-4571doi:10.1161/CIRCRESAHA.108.178434PMID:18787191
  23. Wang K., Li P. Foxo3a regulates apoptosis by negatively targeting miR-21 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2010. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M109.093005PMID:20371612
  24. Hanniford D., Bhardwaj N. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2009. — 6 p. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.0808263106PMID:19188590
  25. Patterson C., Bode C., Augustin H. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis // Circ. Res.Lippincott Williams & Wilkins, 2008. — ISSN 0009-7330; 1524-4571doi:10.1161/CIRCRESAHA.108.178434PMID:18787191
  26. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  27. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)