ICAM1

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/ICAM1 latin yazuında])
ICAM1
Сурәт
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген ICAM-1[d][1]
Молекулярная функция virus receptor activity[d][2], protein-containing complex binding[d][3][2], integrin binding[d][4][3][5], связывание с белками плазмы[d][6][7][8][…], transmembrane signaling receptor activity[d][9], integrin binding[d][10][2][11][…] һәм signaling receptor activity[d][9]
Күзәнәк компоненты часть мембраны[d][2], мембрана[d][3][3][12], Фокальные контакты[d][13], күзәнәк мембраны[d][2][14][2], часть клеточной мембраны[d][15], поверхность клетки[d][3][16][17], Иммунологический синапс[d][2], Липидный рафт[d][2], экзосома[d][18][19][20], наружная сторона клеточной мембраны[d][2], внеклеточное пространство[d][2][21], внеклеточный матрикс[d][22], часть клеточной мембраны[d][9][23], Фокальные контакты[d][24], поверхность клетки[d][2][25][26], мембрана[d][2][2][27], collagen-containing extracellular matrix[d][28] һәм экзосома[d][29][30][31]
Биологический процесс leukocyte cell-cell adhesion[d][32][2], response to ionizing radiation[d][2], establishment of endothelial barrier[d][33], negative regulation of endothelial cell apoptotic process[d][34], cellular response to organic substance[d][2], heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules[d][32], response to amino acid[d][2], response to hypoxia[d][2], positive regulation of actin filament polymerization[d][2], response to organic cyclic compound[d][2], T cell antigen processing and presentation[d][2], establishment of Sertoli cell barrier[d][2], response to sulfur dioxide[d][2], response to copper ion[d][2], interferon-gamma-mediated signaling pathway[d][2], positive regulation of nitric oxide biosynthetic process[d][2], response to amphetamine[d][2], cellular response to tumor necrosis factor[d][2], regulation of leukocyte mediated cytotoxicity[d][35], T cell activation via T cell receptor contact with antigen bound to MHC molecule on antigen presenting cell[d][32], extracellular matrix organization[d][2], acute inflammatory response to antigenic stimulus[d][2], sensory perception of sound[d][2], cellular response to alkaloid[d][2], response to gonadotropin[d][2], positive regulation of cellular extravasation[d][36], positive regulation of GTPase activity[d][2], response to lipopolysaccharide[d][2], regulation of cell adhesion[d][2], Агрегация клеток[d][3][3][37], cell adhesion mediated by integrin[d][2], positive regulation of NF-kappaB transcription factor activity[d][2], negative regulation of extrinsic apoptotic signaling pathway via death domain receptors[d][34], positive regulation of vasoconstriction[d][2], cellular response to interleukin-1[d][2], cellular response to nutrient levels[d][2], negative regulation of calcium ion transport[d][2], regulation of cell shape[d][2], membrane to membrane docking[d][38], positive regulation of peptidyl-tyrosine phosphorylation[d][2], ovarian follicle development[d][2], regulation of immune response[d][2], positive regulation of ERK1 and ERK2 cascade[d][34], regulation of ruffle assembly[d][2], viral entry into host cell[d][2], response to ethanol[d][2], вирусный процесс[d][2], cellular response to lipopolysaccharide[d][2], cellular response to hypoxia[d][2], leukocyte migration[d][38], cellular response to glucose stimulus[d][2], response to insulin[d][2], cellular response to interferon-gamma[d][2], cellular response to interleukin-6[d][2], cellular response to dexamethasone stimulus[d][2], establishment of endothelial intestinal barrier[d][2], positive regulation of leukocyte adhesion to vascular endothelial cell[d][2], cellular response to leukemia inhibitory factor[d][2], cell-cell adhesion[d][2][2], Агрегация клеток[d][2][2][39][…], cytokine-mediated signaling pathway[d][2], T cell extravasation[d][2] һәм cellular response to amyloid-beta[d][40]
Изображение Gene Atlas

ICAM1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[41][42]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,60 2,61 2,62 2,63 2,64 2,65 GOA
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 GOA
  4. Holness C. L., Needham L. A., Gatter K. C. et al. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes // Nature / M. SkipperNPG, Springer Science+Business Media, 1992. — ISSN 1476-4687; 0028-0836doi:10.1038/360481A0PMID:1448173
  5. Chiang Y., Lee F. S. CBAP functions as a novel component in chemokine-induced ZAP70-mediated T-cell adhesion and migration // PLOS ONE / PLOS ONE EditorsPLoS, 2013. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0061761PMID:23620790
  6. Sánchez-Madrid F., Rocha-Perugini V., Gonzalez-Granado J. M. et al. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses // Mol. Cell. Biol.ASM, 2013. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.00302-13PMID:23858057
  7. Gewirtz A. CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia, CD98 and Intracellular Adhesion Molecule I Regulate the Activity of Amino Acid Transporter LAT-2 in Polarized Intestinal Epithelia // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M302777200PMID:12716892
  8. Joachimiak A. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation // CellCell Press, Elsevier BV, 2003. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(02)01257-6PMID:12526797
  9. 9,0 9,1 9,2 McClelland A. The major human rhinovirus receptor is ICAM-1 // CellCell Press, Elsevier BV, 1989. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(89)90688-0PMID:2538243
  10. Holness C. L., Needham L. A., Gatter K. C. et al. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes // Nature / M. SkipperNPG, Springer Science+Business Media, 1992. — ISSN 1476-4687; 0028-0836doi:10.1038/360481A0PMID:1448173
  11. Chiang Y., Lee F. S. CBAP functions as a novel component in chemokine-induced ZAP70-mediated T-cell adhesion and migration // PLOS ONE / PLOS ONE EditorsPLoS, 2013. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0061761PMID:23620790
  12. Lippert D. Defining the membrane proteome of NK cells // J. Mass Spectrom.Wiley, 2010. — ISSN 1076-5174; 1096-9888doi:10.1002/JMS.1696PMID:19946888
  13. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  14. Dustin M. L. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families // CellCell Press, Elsevier BV, 1988. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(88)90434-5PMID:3349522
  15. McClelland A. The major human rhinovirus receptor is ICAM-1 // CellCell Press, Elsevier BV, 1989. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(89)90688-0PMID:2538243
  16. Roberts L. L., Robinson C. M. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines // ImmunologyWiley-Blackwell, 2014. — ISSN 0019-2805; 1365-2567doi:10.1111/IMM.12164PMID:23981064
  17. Teckchandani A., Toida N., Goodchild J. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration // J. Cell Biol. / J. NunnariRockefeller University Press, 2009. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200812160PMID:19581412
  18. Atay S., Gercel-Taylor C., Kesimer M. et al. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells // Exp. Cell. Res.Academic Press, Elsevier BV, 2011. — ISSN 0014-4827; 1090-2422doi:10.1016/J.YEXCR.2011.01.014PMID:21276792
  19. Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell BiologyWiley, 2010. — ISSN 0818-9641; 1440-1711doi:10.1038/ICB.2010.64PMID:20458337
  20. Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450doi:10.1681/ASN.2008040406PMID:19056867
  21. Augustin H. G. Circulating endothelial cell adhesion molecules as diagnostic markers for the early identification of pregnant women at risk for development of preeclampsia // American Journal of Obstetrics and GynecologyElsevier BV, 1997. — ISSN 0002-9378; 1097-6868; 1085-8709doi:10.1016/S0002-9378(97)70213-8PMID:9290466
  22. Mayr M., Iozzo R. V., Barallobre-Barreiro J. et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation // CirculationLippincott Williams & Wilkins, 2016. — ISSN 0009-7322; 1524-4539doi:10.1161/CIRCULATIONAHA.115.016423PMID:27559042
  23. Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  24. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  25. Roberts L. L., Robinson C. M. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines // ImmunologyWiley-Blackwell, 2014. — ISSN 0019-2805; 1365-2567doi:10.1111/IMM.12164PMID:23981064
  26. Teckchandani A., Toida N., Goodchild J. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration // J. Cell Biol. / J. NunnariRockefeller University Press, 2009. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200812160PMID:19581412
  27. Lippert D. Defining the membrane proteome of NK cells // J. Mass Spectrom.Wiley, 2010. — ISSN 1076-5174; 1096-9888doi:10.1002/JMS.1696PMID:19946888
  28. Mayr M., Iozzo R. V., Barallobre-Barreiro J. et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation // CirculationLippincott Williams & Wilkins, 2016. — ISSN 0009-7322; 1524-4539doi:10.1161/CIRCULATIONAHA.115.016423PMID:27559042
  29. Atay S., Gercel-Taylor C., Kesimer M. et al. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells // Exp. Cell. Res.Academic Press, Elsevier BV, 2011. — ISSN 0014-4827; 1090-2422doi:10.1016/J.YEXCR.2011.01.014PMID:21276792
  30. Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell BiologyWiley, 2010. — ISSN 0818-9641; 1440-1711doi:10.1038/ICB.2010.64PMID:20458337
  31. Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450doi:10.1681/ASN.2008040406PMID:19056867
  32. 32,0 32,1 32,2 Dustin M. L. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1 // Nature / M. SkipperNPG, Springer Science+Business Media, 1989. — ISSN 1476-4687; 0028-0836doi:10.1038/341619A0PMID:2477710
  33. Aranda J. F., Millán J., Kremer L. et al. MYADM controls endothelial barrier function through ERM-dependent regulation of ICAM-1 expression // Mol. Biol. Cell,American Society for Cell Biology, 2013. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.E11-11-0914PMID:23264465
  34. 34,0 34,1 34,2 E Pluskota, S E D'Souza Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival // FEBS J.Wiley-Blackwell, 2000. — ISSN 1742-464X; 0014-2956; 1742-4658; 1432-1033doi:10.1046/J.1432-1327.2000.01520.XPMID:10903502
  35. Yokomori H. Expression of adhesion molecules on mature cholangiocytes in canal of Hering and bile ductules in wedge biopsy samples of primary biliary cirrhosis // World J. Gastroenterol.Baishideng Publishing Group, 2005. — ISSN 1007-9327; 2219-2840doi:10.3748/WJG.V11.I28.4382PMID:16038038
  36. Greenwood J., Couraud P., Lyck R. et al. Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration // J. Immunol.Baltimore: 2003. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.171.4.2099PMID:12902516
  37. Ottoboni L., Meregalli M., Torrente Y. et al. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation // BloodAmerican Society of Hematology, Elsevier BV, 2006. — ISSN 0006-4971; 1528-0020doi:10.1182/BLOOD-2006-04-018564PMID:16809613
  38. 38,0 38,1 Yáñez-Mó M., Serrador J. M., Montoya M. C. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes // J. Cell Biol. / J. NunnariRockefeller University Press, 2002. — 13 p. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200112126PMID:12082081
  39. Ottoboni L., Meregalli M., Torrente Y. et al. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation // BloodAmerican Society of Hematology, Elsevier BV, 2006. — ISSN 0006-4971; 1528-0020doi:10.1182/BLOOD-2006-04-018564PMID:16809613
  40. R Giri, Y Shen, M Stins et al. beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. // American Journal of Physiology: Cell Physiology — 2000. — ISSN 0363-6143; 1522-1563doi:10.1152/AJPCELL.2000.279.6.C1772PMID:11078691
  41. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  42. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)