LRP1

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/LRP1 latin yazuında])
LRP1
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген LRP1[d][1]
Молекулярная функция calcium ion binding[d][2][2], apolipoprotein binding[d][3][4], lipoprotein particle receptor binding[d][3], protein-containing complex binding[d][5][6], связывание с ионом металла[d][2], protease binding[d][2], связывание с белками плазмы[d][7][8][9][…], low-density lipoprotein particle receptor activity[d][10], RNA binding[d][11], amyloid-beta binding[d][2], RNA binding[d][12], scavenger receptor activity[d][13], coreceptor activity[d][2], alpha-2 macroglobulin receptor activity[d][14][15], apolipoprotein receptor activity[d][14], clathrin heavy chain binding[d][16], signaling receptor activity[d][17], cargo receptor activity[d][2][18][19], heparan sulfate proteoglycan binding[d][14] һәм cargo receptor activity[d][20][2][19][…]
Күзәнәк компоненты часть мембраны[d][2], endocytic vesicle membrane[d][2], эндосома[d][2], мембрана[d][21], Фокальные контакты[d][22], receptor complex[d][23], күзәнәк мембраны[d][2][24][2], часть клеточной мембраны[d][2], lysosomal membrane[d][25], neuronal cell body[d][2], дендрит[d][2], ядрышко[d][21], clathrin-coated pit[d][2], clathrin-coated vesicle[d][2], Төш[2], Цитоплазма[2], цитозоль[d][21], lysosomal membrane[d][26], early endosome[d][16], Фокальные контакты[d][27], мембрана[d][28][2], basolateral plasma membrane[d][16], insulin-responsive compartment[d][2], axonal growth cone[d][2], apical part of cell[d][2] һәм plasma membrane protein complex[d][14]
Биологический процесс lipoprotein metabolic process[d][2], negative regulation of neuron apoptotic process[d][2], negative regulation of platelet-derived growth factor receptor-beta signaling pathway[d][2], negative regulation of neuron projection development[d][2], Эндоцитоз[d][2], regulation of actin cytoskeleton organization[d][2], regulation of phospholipase A2 activity[d][2], amyloid-beta clearance[d][29], negative regulation of Wnt signaling pathway[d][2], старение человека[d][2], negative regulation of smooth muscle cell migration[d][2], positive regulation of lipid transport[d][2], Рецепторно-опосредованный эндоцитоз[d][21], aorta morphogenesis[d][2], retinoid metabolic process[d][2], regulation of cholesterol transport[d][2], positive regulation of protein transport[d][2], apoptotic cell clearance[d][2], multicellular organism development[d][2], protein kinase C-activating G protein-coupled receptor signaling pathway[d][2], positive regulation of cholesterol efflux[d][2], cerebral cortex development[d][2], пролиферация[d][2], lipoprotein transport[d][20], regulation of extracellular matrix disassembly[d][24], astrocyte activation involved in immune response[d][2], липидный обмен[d][14], Рецепторно-опосредованный эндоцитоз[d][2][2][19][…], Фагоцитоз[30][19], positive regulation of cytosolic calcium ion concentration[d][2], negative regulation of cell-substrate adhesion[d][2], positive regulation of cell death[d][28], positive regulation of neuron projection development[d][2], receptor internalization[d][31], positive regulation of protein binding[d][28], positive regulation of insulin secretion involved in cellular response to glucose stimulus[d][2], негативная регуляция апоптоза[d][2], cellular lipid catabolic process[d][2], Трансцитоз[d][31], positive regulation of axon extension[d][2], positive regulation of endocytosis[d][28], positive regulation of axon extension involved in regeneration[d][2], positive regulation of collateral sprouting of injured axon[d][2], positive regulation of phagocytosis[d][2], negative regulation of cytosolic calcium ion concentration[d][2], negative regulation of focal adhesion assembly[d][2], negative regulation of cell death[d][2], chemoattraction of axon[d][2], positive regulation of ERK1 and ERK2 cascade[d][2], amyloid-beta clearance[d][32][30], amyloid-beta clearance by transcytosis[d][16], amyloid-beta clearance by cellular catabolic process[d][2][19][18], positive regulation of Schwann cell migration[d][2], positive regulation of amyloid-beta clearance[d][33], positive regulation of protein localization to plasma membrane[d][28], positive regulation of cholesterol import[d][2], cellular response to amyloid-beta[d][2], positive regulation of vascular associated smooth muscle cell migration[d][2], positive regulation of lysosomal protein catabolic process[d][19] һәм lysosomal transport[d][2]

LRP1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[34][35]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,60 2,61 2,62 2,63 2,64 2,65 2,66 2,67 2,68 GOA
  3. 3,0 3,1 Dichlberger A., Schaap F. G., Lins L. et al. Effects of six APOA5 variants, identified in patients with severe hypertriglyceridemia, on in vitro lipoprotein lipase activity and receptor binding // Arteriosclerosis, Thrombosis, and Vascular BiologyLippincott Williams & Wilkins, 2008. — ISSN 1079-5642; 1524-4636doi:10.1161/ATVBAHA.108.172866PMID:18635818
  4. U Beisiegel, W Weber, G Ihrke et al. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein // Nature / M. SkipperNPG, Springer Science+Business Media, 1989. — ISSN 1476-4687; 0028-0836doi:10.1038/341162A0PMID:2779654
  5. S Stefansson, Lawrence D. A., Argraves W. S. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1996. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.271.14.8215PMID:8626514
  6. S Stefansson, Lawrence D. A., Argraves W. S. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1996. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.271.14.8215PMID:8626514
  7. H Muramatsu, K Zou, N Sakaguchi et al. LDL receptor-related protein as a component of the midkine receptor // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2000. — ISSN 0006-291X; 1090-2104doi:10.1006/BBRC.2000.2549PMID:10772929
  8. Sinning I., Wild K. Phosphorylation of LRP1 regulates the interaction with Fe65 // FEBS LettersElsevier BV, 2011. — ISSN 0014-5793; 1873-3468doi:10.1016/J.FEBSLET.2011.09.028PMID:21968187
  9. Eugenin E. A., King J. E., Nath A. et al. HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2007. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.0611699104PMID:17360663
  10. Kim J., Castellano J. M., Holtzman D. M. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance // Neuron / K. BroseCell Press, Elsevier BV, 2009. — 13 p. — ISSN 0896-6273; 1097-4199doi:10.1016/J.NEURON.2009.11.013PMID:20005821
  11. Preiss T., Beckmann B. M., Humphreys D. T. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins // CellCell Press, Elsevier BV, 2012. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2012.04.031PMID:22658674
  12. Preiss T., Beckmann B. M., Humphreys D. T. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins // CellCell Press, Elsevier BV, 2012. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2012.04.031PMID:22658674
  13. Husemann J, JD L., Kodama T et al. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar beta-amyloid // J. Neuroimmunol.Elsevier BV, 2001. — ISSN 0165-5728; 1872-8421doi:10.1016/S0165-5728(01)00239-9PMID:11240025
  14. 14,0 14,1 14,2 14,3 14,4 Kanekiyo T., Zhang J., Liu Q. et al. Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake // J. Neurosci. / M. PicciottoSociety for Neuroscience, 2011. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.5491-10.2011PMID:21289173
  15. Forsberg L., Baig S. M. Whole exome sequencing identifies LRP1 as a pathogenic gene in autosomal recessive keratosis pilaris atrophicans // J. Med. Genet.BMJ, 2015. — ISSN 0022-2593; 1468-6244doi:10.1136/JMEDGENET-2014-102931PMID:26142438
  16. 16,0 16,1 16,2 16,3 Ma Q., Kisler K., Zhu D. et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance // Nat. Neurosci.NPG, 2015. — 10 p. — ISSN 1097-6256; 1546-1726doi:10.1038/NN.4025PMID:26005850
  17. A Kurdowska, Alden S. M., Noble J. M. et al. Involvement of alpha-2-macroglobulin receptor in clearance of interleukin 8-alpha-2-macroglobulin complexes by human alveolar macrophages // CytokineElsevier BV, 2000. — ISSN 1043-4666; 1096-0023doi:10.1006/CYTO.1999.0640PMID:10880251
  18. 18,0 18,1 Holtzman D. M. Neuronal clearance of amyloid-β by endocytic receptor LRP1. // J. Neurosci. / M. PicciottoSociety for Neuroscience, 2013. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.3487-13.2013PMID:24305823
  19. 19,0 19,1 19,2 19,3 19,4 19,5 Kanekiyo T., Liu C., Shinohara M. et al. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β. // J. Neurosci. / M. PicciottoSociety for Neuroscience, 2012. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.3987-12.2012PMID:23152628
  20. 20,0 20,1 S Rogne, O Myklebost, S. Rogne et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor // EMBO J.NPG, 1988. — ISSN 0261-4189; 1460-2075doi:10.1002/J.1460-2075.1988.TB03306.XPMID:3266596
  21. 21,0 21,1 21,2 21,3 GOA
  22. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  23. Ghai R., Coulson E. J., Collins B. M. et al. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2013. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1216229110PMID:23382219
  24. 24,0 24,1 Rozanov D. V., Hahn-Dantona E., Strickland D. K. et al. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2004. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M311569200PMID:14645246
  25. Schröder B., Wrocklage C., Pan C. et al. Integral and associated lysosomal membrane proteins // TrafficWiley-Blackwell, 2007. — ISSN 1398-9219; 1600-0854doi:10.1111/J.1600-0854.2007.00643.XPMID:17897319
  26. Schröder B., Wrocklage C., Pan C. et al. Integral and associated lysosomal membrane proteins // TrafficWiley-Blackwell, 2007. — ISSN 1398-9219; 1600-0854doi:10.1111/J.1600-0854.2007.00643.XPMID:17897319
  27. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  28. 28,0 28,1 28,2 28,3 28,4 Hooper N. M. Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2013. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M112.400358PMID:23386614
  29. Deane R. SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells // Nat. Cell Biol.NPG, 2009. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB1819PMID:19098903
  30. 30,0 30,1 Choucair-Jaafar N., Laporte V., Levy R. et al. Complement receptor 3 (CD11b/CD18) is implicated in the elimination of β-amyloid peptides // Fundamental and Clinical PharmacologyWiley-Blackwell, 2011. — ISSN 0767-3981; 1472-8206doi:10.1111/J.1472-8206.2010.00811.XPMID:20199584
  31. 31,0 31,1 Pflanzner T., Petsch B., André-Dohmen B. et al. Cellular prion protein participates in amyloid-β transcytosis across the blood-brain barrier // J. Cereb. Blood Flow Metab. / International Society for Cerebral Blood Flow and MetabolismNPG, 2012. — ISSN 0271-678X; 1559-7016doi:10.1038/JCBFM.2012.7PMID:22293988
  32. Deane R. SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells // Nat. Cell Biol.NPG, 2009. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB1819PMID:19098903
  33. Holtzman D. M. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2012. — 13 p. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M111.288746PMID:22383525
  34. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  35. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)