NOD2

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/NOD2 latin yazuında])
NOD2
Сурәт
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген NOD2[d][1]
Молекулярная функция Hsp90 protein binding[d][2], нуклеотид-связывающий[d][3], Hsp70 protein binding[d][2], связывание с белками плазмы[d][4][5][6][…], peptidoglycan binding[d][7], enzyme binding[d][8], actin binding[d][2], CARD domain binding[d][9], АТФ-связанные[d][3], protein kinase binding[d][10][11][2], muramyl dipeptide binding[d][3][7] һәм protein-containing complex binding[d][6]
Күзәнәк компоненты Цитоплазма[12][13][13][…], цитозоль[d][13][13][14], Везикула[d][15][7], мембрана[d][3], күзәнәк мембраны[d][3][16][7], поверхность клетки[d][17], basolateral plasma membrane[d][3][18], Сигналосома COP9[d][19], Цитоскелет[d][15], Гольджи аппараты[3], митохондрия[d][3], protein-containing complex[d][15], Цитоплазма[20][3][3][…] һәм цитозоль[d][3][3][7][…]
Биологический процесс positive regulation of prostaglandin-endoperoxide synthase activity[d][3], regulation of apoptotic process[d][3], defense response[d][20], detection of biotic stimulus[d][20], cytokine production involved in immune response[d][21], positive regulation of cytokine production involved in inflammatory response[d][22], intracellular signal transduction[d][23], detection of muramyl dipeptide[d][24][7], positive regulation of interleukin-10 production[d][3], positive regulation of epithelial cell proliferation[d][3], immune system process[d][3], positive regulation of oxidoreductase activity[d][3], response to muramyl dipeptide[d][25][13][14][…], positive regulation of prostaglandin-E synthase activity[d][3], positive regulation of JNK cascade[d][26], positive regulation of nitric-oxide synthase biosynthetic process[d][3], positive regulation of NIK/NF-kappaB signaling[d][16], positive regulation of phosphatidylinositol 3-kinase activity[d][3], positive regulation of gamma-delta T cell activation[d][3], cellular response to muramyl dipeptide[d][27][16][15], JNK cascade[d][3], negative regulation of macrophage apoptotic process[d][3], positive regulation of dendritic cell antigen processing and presentation[d][3], nucleotide-binding oligomerization domain containing 2 signaling pathway[d][28][24], maintenance of gastrointestinal epithelium[d][29], defense response to bacterium[d][23], positive regulation of NF-kappaB transcription factor activity[d][3][18][2][…], positive regulation of interleukin-8 production[d][2], detection of bacterium[d][30], positive regulation of interleukin-1 beta production[d][31], regulation of inflammatory response[d][32], positive regulation of interleukin-6 production[d][33], protein complex oligomerization[d][20], positive regulation of tumor necrosis factor production[d][31][26], positive regulation of ERK1 and ERK2 cascade[d][3], positive regulation of I-kappaB kinase/NF-kappaB signaling[d][34][35], positive regulation of B cell activation[d][36], positive regulation of interleukin-17 production[d][37], positive regulation of type 2 immune response[d][38], nucleotide-binding oligomerization domain containing signaling pathway[d][3], positive regulation of stress-activated MAPK cascade[d][26], positive regulation of Notch signaling pathway[d][3], положительная регуляция транскрипции РНК полимеразой II промотор[d][15], cellular response to organic cyclic compound[d][3], позитивная регуляция пролиферации клеток[d][3], Врождённый иммунитет[d][39][3][28], response to nutrient[d][3], positive regulation of dendritic cell cytokine production[d][3], positive regulation of protein K63-linked ubiquitination[d][11], cellular response to peptidoglycan[d][3], positive regulation of MAP kinase activity[d][3], interleukin-1-mediated signaling pathway[d][3], cellular response to lipopolysaccharide[d][27], response to muramyl dipeptide[d][2][3][7][…], intracellular signal transduction[d][30][40], defense response to bacterium[d][30][40] һәм positive regulation of I-kappaB kinase/NF-kappaB signaling[d][9][24][40]
Изображение Gene Atlas

NOD2 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[41][42]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Mohanan V., Grimes C. L. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2014. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M114.557686PMID:24790089
  3. 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 3,11 3,12 3,13 3,14 3,15 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,27 3,28 3,29 3,30 3,31 3,32 3,33 3,34 3,35 3,36 3,37 GOA
  4. Pio F., Godzik A. CLAN, a novel human CED-4-like gene // Genomics / A. EngelAcademic Press, Elsevier BV, 2001. — ISSN 0888-7543; 1089-8646doi:10.1006/GENO.2001.6579PMID:11472070
  5. Fillet M., Louis E. The c-Jun N-terminal kinase (JNK)-binding protein (JNKBP1) acts as a negative regulator of NOD2 protein signaling by inhibiting its oligomerization process // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2012. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M112.355545PMID:22700971
  6. 6,0 6,1 Jean da Silva Correia, Miranda Y., Leonard N. et al. The subunit CSN6 of the COP9 signalosome is cleaved during apoptosis // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2007. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M609587200PMID:17337451
  7. 7,0 7,1 7,2 7,3 7,4 7,5 7,6 Barnich N. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition // J. Cell Biol. / J. NunnariRockefeller University Press, 2005. — 6 p. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200502153PMID:15998797
  8. Barnich N. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2005. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M413776200PMID:15753091
  9. 9,0 9,1 G Nunez Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M008072200PMID:11087742
  10. Chen C., Gong Y., Zhang M. et al. Reciprocal cross-talk between Nod2 and TAK1 signaling pathways // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2004. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M400682200PMID:15075345
  11. 11,0 11,1 Chauhan S., Deretic V. IRGM governs the core autophagy machinery to conduct antimicrobial defense // Mol. CellCell Press, Elsevier BV, 2015. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2015.03.020PMID:25891078
  12. Tschopp J. NLRs join TLRs as innate sensors of pathogens // Trends in ImmunologyElsevier BV, 2005. — ISSN 1471-4906; 1471-4981; 0167-5699doi:10.1016/J.IT.2005.06.004PMID:15967716
  13. 13,0 13,1 13,2 13,3 13,4 GOA
  14. 14,0 14,1 Barnich N. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition // J. Cell Biol. / J. NunnariRockefeller University Press, 2005. — 6 p. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200502153PMID:15998797
  15. 15,0 15,1 15,2 15,3 15,4 Xavier R. Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1 // Inflammatory Bowel DiseasesLippincott Williams & Wilkins, OUP, 2012. — ISSN 1078-0998; 1536-4844doi:10.1002/IBD.21851PMID:21887730
  16. 16,0 16,1 16,2 Monie T. P. Blau syndrome polymorphisms in NOD2 identify nucleotide hydrolysis and helical domain 1 as signalling regulators // FEBS LettersElsevier BV, 2014. — ISSN 0014-5793; 1873-3468doi:10.1016/J.FEBSLET.2014.07.029PMID:25093298
  17. Kufer T. A. Role for erbin in bacterial activation of Nod2 // Infect. Immun. / A. J. BäumlerASM, Hindawi Publishing Corporation, 2006. — ISSN 0019-9567; 1098-5522; 1070-6313doi:10.1128/IAI.00035-06PMID:16714539
  18. 18,0 18,1 McDonald C., Chen F. F., Ollendorff V. et al. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2005. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M508538200PMID:16203728
  19. Jean da Silva Correia, Miranda Y., Leonard N. et al. The subunit CSN6 of the COP9 signalosome is cleaved during apoptosis // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2007. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M609587200PMID:17337451
  20. 20,0 20,1 20,2 20,3 Tschopp J. NLRs join TLRs as innate sensors of pathogens // Trends in ImmunologyElsevier BV, 2005. — ISSN 1471-4906; 1471-4981; 0167-5699doi:10.1016/J.IT.2005.06.004PMID:15967716
  21. Dinarello C. A., Netea M. G., Kim J. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2005. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.0508237102PMID:16260731
  22. Kapoor A. Activation of nucleotide oligomerization domain 2 (NOD2) by human cytomegalovirus initiates innate immune responses and restricts virus replication // PLOS ONE / PLOS ONE EditorsPLoS, 2014. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0092704PMID:24671169
  23. 23,0 23,1 Suttorp N., Hippenstiel S., Schmeck B. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae // Circ. Res.Lippincott Williams & Wilkins, 2005. — ISSN 0009-7330; 1524-4571doi:10.1161/01.RES.0000155721.83594.2CPMID:15653568
  24. 24,0 24,1 24,2 Boneca I. G., Chamaillard M., Sansonetti P. J. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.C200651200PMID:12527755
  25. Mohanan V., Grimes C. L. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2014. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M114.557686PMID:24790089
  26. 26,0 26,1 26,2 Hsu Y. S., Zhang Y., You Y. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens // Nat. Immunol.USA: NPG, 2007. — ISSN 1529-2908; 1529-2916doi:10.1038/NI1426PMID:17187069
  27. 27,0 27,1 Lécine P., Perroy J., Borg J. et al. Characterization and Genetic Analyses of New Genes Coding for NOD2 Interacting Proteins // PLOS ONE / PLOS ONE EditorsPLoS, 2016. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0165420PMID:27812135
  28. 28,0 28,1 Komander D., Damgaard R. B., Gyrd-Hansen M. et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling // Mol. CellCell Press, Elsevier BV, 2013. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2013.06.004PMID:23806334
  29. Stremmel W., Schmitz G. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease // J. Mol. Med.Springer Science+Business Media, 2006. — ISSN 0946-2716; 1432-1440doi:10.1007/S00109-006-0100-2PMID:17058067
  30. 30,0 30,1 30,2 Suttorp N., Hippenstiel S., Schmeck B. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae // Circ. Res.Lippincott Williams & Wilkins, 2005. — ISSN 0009-7330; 1524-4571doi:10.1161/01.RES.0000155721.83594.2CPMID:15653568
  31. 31,0 31,1 Núñez G. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages // Cellular MicrobiologyWiley-Blackwell, 2011. — ISSN 1462-5814; 1462-5822doi:10.1111/J.1462-5822.2010.01544.XPMID:21040358
  32. Duerr R. H., Brant S. R., Cho J. H. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease // Nature / M. SkipperNPG, Springer Science+Business Media, 2001. — ISSN 1476-4687; 0028-0836doi:10.1038/35079114PMID:11385577
  33. Zamora D. O. Human endothelial cells express NOD2/CARD15 and increase IL-6 secretion in response to muramyl dipeptide // Microvascular ResearchElsevier BV, 2006. — ISSN 0026-2862; 1095-9319doi:10.1016/J.MVR.2005.11.010PMID:16414084
  34. G Nunez Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M008072200PMID:11087742
  35. Boneca I. G., Chamaillard M., Sansonetti P. J. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.C200651200PMID:12527755
  36. Riesbeck K., Cardell L. Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors // J. Leukoc. Biol. / L. MontanerWiley-Blackwell, 2011. — ISSN 0741-5400; 1938-3673doi:10.1189/JLB.0210061PMID:20844241
  37. Astrid J van Beelen, Zelinkova Z., Taanman-Kueter E. W. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells // ImmunityCell Press, Elsevier BV, 2007. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2007.08.013PMID:17919942
  38. Chaudhary R., David A van Heel NOD2 activity modulates the phenotype of LPS-stimulated dendritic cells to promote the development of T-helper type 2-like lymphocytes - Possible implications for NOD2-associated Crohn's disease // Journal of Crohn's and ColitisOUP, 2007. — ISSN 1873-9946; 1876-4479doi:10.1016/J.CROHNS.2007.08.006PMID:21172192
  39. Travassos L. H., Carneiro L. A. The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation // Seminars in ImmunopathologySpringer Science+Business Media, 2007. — ISSN 1863-2297; 0344-4325; 1863-2300; 1432-2196doi:10.1007/S00281-007-0083-2PMID:17690884
  40. 40,0 40,1 40,2 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  41. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  42. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)