Гәрәбә әчелеге

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/Гәрәбә әчелеге latin yazuında])
Навигациягә күчү Эзләүгә күчү
Гәрәбә әчелеге
Химическая структура
Масса 118,027 м.а.б.[1]
Химик фурмула C₄H₆O₄[1]
SMILES фурмуласы C(CC(=O)O)C(=O)O[1]
Эрү температурасы 187 °C[2]
Нинди таксонда бар Родиола розовая[d][3], конопля посевная[d][4], Angelica sinensis[d][5][6][7], Diplachne fusca[d][8], Leptochloa fusca[d][8], Люпин жёлтый[d][9], Garcinia cowa[d][10], Garcinia gummi-gutta[d][10], кишечная палочка[d][11][12], Gunnera perpensa[d][13], Pycnandra acuminata[d][14], Агава американская[d][15], зур панда[16], Резуховидка Таля[d][17][18][19][…], Candida albicans[d][20], Chlamydomonas reinhardtii[d][21], Ряска тропическая[d][22], Lotus burttii[d][23], Лядвенец рогатый[d][23], Lotus tenuis[d][23], Lotus uliginosus[d][23], Люцерна посевная[d][24], Mycoplasma bovis[d][25], Mycoplasma gallisepticum[d][25], Женьшень[d][26], Осина[d][27], Синегнойная палочка[d][28], Pseudostellaria heterophylla[d][29], Salmonella enterica[d][30][31], томат[d][32], Стафилококк золотистый[d][20], Synechococcus elongatus[d][33], Synechocystis[d][34], Trypanosoma brucei[d][35][36], виноград культурный[d][37][38], Ammodendron bifolium[d][39], Ammothamnus lehmannii[d][39], Artemisia gmelinii[d][40], Artemisia sacrorum[d][40], свёкла обыкновенная[d][41], Bidens bipinnata[d][42], Bidens pilosa[d][43][44], чай[d][45], Cistanche salsa[d][46][47], Боярышник перистонадрезанный[d][48], Cremastra appendiculata[d][49], Диоскорея клубненосная[d][50], Dodonaea boroniaefolia[d][51], Мелколепестник канадский[d][52], Erigeron canadensis[d][52], Eriophyton wallichii[d][53], Овсяница тростниковая[d][54], Овсяница красная[d][54], Schedonorus arundinaceus[d][54], Тростянка[d][54], Forsythia suspensa[d][55], каен җиләге[56], батат[d][57], Lindera neesiana[d][53], Люпин[d][9], Маммея американская[d][58], Шелковица белая[d][59], Гадючий лук незамеченный[d][60], Muscari racemosum[d][60], Osbeckia chinensis[d][61], Osmunda japonica[d][62], Tropicoporus linteus[d][63], Phomopsis velata[d][64], Phycomyces blakesleeanus[d][65], Вёшенка обыкновенная[d][66], Змеевик большой[d][67], Polygonum bistorta[d][67], Populus lasiocarpa[d][68], Тополь чёрный[d][69], гади анар[d][70], Isodon glutinosus[d][71], Rehmannia glutinosa[d][72], Saxifraga stolonifera[d][73], Арыш[74], Sigesbeckia glabrescens[d][75], Smilax perfoliata[d][76], Scaphium affine[d][77], Тилландсия уснеевидная[d][78], Ак тукранбаш[79], Viburnum furcatum[d][80], Кордицепс китайский[d][81], Большая дафния[d][82], акыллы кеше[d][83], Ardisia elliptica[d][84], Шиитаке[d][85], Astragalus cibarius[d][86], Ceratocystis ips[d][87], Cercospora beticola[d][88], Чистотел большой[d][89], Vincetoxicum atratum[d][90], Наперстянка пурпурная[d][91], Печёночная двуустка[d][92], Fusarium fujikuroi[d][93], Глауциум жёлтый[d][94], Goupia glabra[d][95], Трутовик серно-жёлтый[d][96], Kleinia grandiflora[d][97], Phyllanthus urinaria[d][98], Подорожник большой[d][99], төче чия[100], Орляк обыкновенный[d][101], кызыл карлыган[102], Шлемник байкальский[d][103], Тамаринд[d][104] һәм Viburnum mathewsii[d][80]
Commons-logo.svg Гәрәбә әчелеге Викиҗыентыкта

Гәрәбә әчелеге (НООС-СН2-СН2-СООН) - ак кристаллар; тозлары һәм эфирлары сукцинатлар дип атала. Аз күләмдә гәрәбә, көрән күмер һ.б.н. эчендә бар. Синтетик сулмалаларны алу өчен, органик синтезда кулланыла.

  1. 1,0 1,1 1,2 succinic acid
  2. Bradley J., Williams A., Andrew S.I.D. Lang Jean-Claude Bradley Open Melting Point Dataset // Figshare — 2014. — doi:10.6084/M9.FIGSHARE.1031637.V2
  3. Kurkin V. A., Zapesochnaya G. G., Klyaznika V. G. Flavonoids of the rhizomes ofRhodiola rosea. I. Tricin glucosides // Chemistry of Natural CompoundsSpringer-Verlag, 2004. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/BF00575035
  4. CE T., MA E., EG B. Constituents of Cannabis sativa L. XVII. A review of the natural constituents. // J. Nat. Prod.American Chemical Society, 1980. — ISSN 0163-3864; 1520-6025doi:10.1021/NP50008A001PMID:6991645
  5. DP Z. Dong quai // Am. J. Chin. Med.World Scientific, 1987. — ISSN 0192-415X; 1793-6853doi:10.1142/S0192415X87000151PMID:3425569
  6. Upton R. Dong Quai — 2013. — doi:10.1201/B14669-29
  7. Copper = Leslie M. Klevay — 2013. — doi:10.1201/B13959-20
  8. 8,0 8,1 M. Kloss, K.-H. Iwannek, I. Fendrik et al. Organic acids in the root exudates of diplachne fusca (linn.) beauv. // Environmental and Experimental BotanyElsevier, 2003. — ISSN 0098-8472; 1873-7307doi:10.1016/0098-8472(84)90020-0
  9. 9,0 9,1 C. Barbas, J. A. Lucas García, F. J. Gutiérrez Mañero Separation and identification of organic acids in root exudates ofLupinus luteus by capillary zone electrophoresis // Phytochem. Anal.Wiley, 2005. — ISSN 0958-0344; 1099-1565<55::AID-PCA437>3.0.CO;2-I doi:10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
  10. 10,0 10,1 Y.S. Lewis, S. Neelakantan (−)-Hydroxycitric acid—the principal acid in the fruits of Garcinia cambogia desr. // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(00)86224-X
  11. MG D., JR G. Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli. // Biochem. J.London [etc.]: Portland Press, 1984. — ISSN 0264-6021; 1470-8728doi:10.1042/BJ2230507PMID:6388571
  12. Styczynski M. P. Metabolic Profiling of Escherichia coli-based Cell-Free Expression Systems for Process Optimization // Ind. Eng. Chem. Res.American Chemical Society, 2019. — ISSN 0888-5885; 1520-5045doi:10.1021/ACS.IECR.9B03565PMID:32063671
  13. Khan F., Peter X. K., Mackenzie R. M. et al. Venusol from Gunnera perpensa: structural and activity studies. // PhytochemistryElsevier, 2004. — ISSN 0031-9422; 1873-3700doi:10.1016/J.PHYTOCHEM.2004.02.024PMID:15110692
  14. Callahan D. L., Roessner U., Richard A. O'Hair et al. LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand // PhytochemistryElsevier, 2007. — ISSN 0031-9422; 1873-3700doi:10.1016/J.PHYTOCHEM.2007.07.001PMID:17765935
  15. Yang X., Yin H., Borland A. M. et al. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. // Nature PlantsNPG, 2016. — ISSN 2055-0278; 2055-026Xdoi:10.1038/NPLANTS.2016.178PMID:27869799
  16. Zhang T., Zhang R., Zhang L. et al. Changes in the Milk Metabolome of the Giant Panda (Ailuropoda melanoleuca) with Time after Birth--Three Phases in Early Lactation and Progressive Individual Differences // PLOS ONE / PLOS ONE EditorsPLoS, 2015. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0143417PMID:26630345
  17. Jonsson P., Kusano M., Saito K. et al. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana // BMC Syst. Biol.BMC, Springer-Verlag, 2007. — ISSN 1752-0509doi:10.1186/1752-0509-1-53PMID:18028551
  18. Wurtele E. S., Saito K., Fukushima A. et al. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis // Plant Physiol.American Society of Plant Biologists, 2014. — ISSN 0032-0889; 1532-2548doi:10.1104/PP.114.240986PMID:24828308
  19. Saito K., Fukushima A., Kusano M. et al. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach // BMC Syst. Biol.BMC, Springer-Verlag, 2011. — ISSN 1752-0509doi:10.1186/1752-0509-5-1PMID:21194489
  20. 20,0 20,1 Kean R., Burgess K. V. A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms. // MetabolomicsSpringer-Verlag, 2016. — ISSN 1573-3882; 1573-3890doi:10.1007/S11306-016-1134-2PMID:28003796
  21. Hicks L. M., Gargouri M. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. // The Plant JournalWiley-Blackwell, 2015. — ISSN 0960-7412; 1365-313Xdoi:10.1111/TPJ.12747PMID:25515814
  22. Choi H. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture. // PLOS ONE / PLOS ONE EditorsPLoS, 2017. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0187622PMID:29099862
  23. 23,0 23,1 23,2 23,3 Krämer U., Kopka J., Escaray F. et al. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. // Plant, Cell and Environment / A. AmtmannWiley-Blackwell, 2011. — ISSN 0140-7791; 1365-3040doi:10.1111/J.1365-3040.2010.02266.XPMID:21251019
  24. Song T., Xu H., Sun N. et al. Metabolomic Analysis of Alfalfa (Medicago sativa L.) Root-Symbiotic Rhizobia Responses under Alkali Stress. // Front. Plant Sci.Frontiers Media, 2017. — ISSN 1664-462Xdoi:10.3389/FPLS.2017.01208PMID:28744296
  25. 25,0 25,1 Browning G. F., Masukagami Y., Souza D. D. et al. Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations. // mSystemsASM, 2017. — ISSN 2379-5077doi:10.1128/MSYSTEMS.00055-17PMID:29034329
  26. Gupta R. An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits // Front. Plant Sci.Frontiers Media, 2016. — ISSN 1664-462Xdoi:10.3389/FPLS.2016.00994PMID:27458475
  27. Sokołowska K., Niittylä T., Hvidsten T. R. et al. A metabolite roadmap of the wood-forming tissue in Populus tremula // New PhytologistLondon: Wiley-Blackwell, 2020. — ISSN 0028-646X; 1469-8137doi:10.1111/NPH.16799PMID:32648607
  28. Le S. Transcriptomic and Metabolomics Profiling of Phage-Host Interactions between Phage PaP1 and Pseudomonas aeruginosa. // Frontiers in microbiologyFrontiers Media, 2017. — ISSN 1664-302Xdoi:10.3389/FMICB.2017.00548PMID:28421049
  29. Hua Y., Hou Y., Wang S. et al. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics // MoleculesMDPI, 2016. — ISSN 1420-3049; 1431-5157doi:10.3390/MOLECULES21111538PMID:27854294
  30. Kim Y., Metz T. O., Adkins J. N. et al. Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes // Mol. Biosyst.RSC, 2013. — ISSN 1742-206X; 1742-2051doi:10.1039/C3MB25598KPMID:23559334
  31. Tian S., Wang C., Li Y. et al. The impact of slyA on cell metabolism of Salmonella Typhimurium: a joint study of transcriptomics and metabolomics // J. Proteome Res. / J. YatesAmerican Chemical Society, 2020. — ISSN 1535-3893; 1535-3907doi:10.1021/ACS.JPROTEOME.0C00281PMID:32969666
  32. Steinbeck C., Beisken S., Salek R. M. et al. Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants // Scientific Data / Veronique van den Berghe, S. Sansone, V. HurstMacmillan Publishers, NPG, 2014. — ISSN 2052-4463doi:10.1038/SDATA.2014.29PMID:25977786
  33. Fiore C. L., Longnecker K., Melissa C Kido Soule һ.б. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631. // Environmental MicrobiologyWiley-Blackwell, 2015. — ISSN 1462-2912; 1462-2920doi:10.1111/1462-2920.12899PMID:25970745
  34. Kopka J., Schwarz D., Huege J. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. // Plant Physiol.American Society of Plant Biologists, 2008. — ISSN 0032-0889; 1532-2548doi:10.1104/PP.108.129403PMID:18945936
  35. Barrett M. P., Vincent I. M., Burgess K. et al. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei // PLOS Neglected Tropical Diseases / P. J. HotezPLoS, 2012. — ISSN 1935-2735; 1935-2727doi:10.1371/JOURNAL.PNTD.0001618PMID:22563508
  36. Creek D. J., Nijagal B., Kim D. et al. Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei // Antimicrob. Agents Chemother.ASM, 2013. — ISSN 0066-4804; 1098-6596; 1070-6283doi:10.1128/AAC.00044-13PMID:23571546
  37. Stefanini I., Carlin S., Albanese D. et al. Core Microbiota and Metabolome of Vitis vinifera L. cv. Corvina Grapes and Musts // Frontiers in microbiologyFrontiers Media, 2017. — ISSN 1664-302Xdoi:10.3389/FMICB.2017.00457PMID:28377754
  38. Wormall A The Constituents of the Sap of the Vine (Vitis vinifera L.). // Biochem. J.London [etc.]: Portland Press, 1924. — ISSN 0264-6021; 1470-8728doi:10.1042/BJ0181187PMID:16743387
  39. 39,0 39,1 A. Sattikulov, Sh. V. Abdullaev, É. Kh. Batirov et al. Organic acids ofAmmothamnus lehmannii // Chemistry of Natural CompoundsSpringer-Verlag, 2004. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/BF00575055
  40. 40,0 40,1 Chemical constituents from Artemisia annua // 中国中药杂志 — 2014. — ISSN 1001-5302doi:10.4268/CJCMM20142423
  41. SUGAR BEET (Beta vulgaris) — 2008. — doi:10.1007/978-1-4020-4585-1_2617
  42. Chemical constituents from Bidens bipinnata // 中国中药杂志 — 2014. — ISSN 1001-5302doi:10.4268/CJCMM20141017
  43. W Jia Flavonoids from Bidens pilosa var. radiata // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(97)00420-2
  44. Sun H. Flavonoids from Bidens pilosa var. radiata // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(97)80026-X
  45. M.-Y Ding, P.-R Chen, G.-A Luo Simultaneous determination of organic acids and inorganic anions in tea by ion chromatography // J. Chromatogr. AElsevier, 2002. — ISSN 1873-3778; 0021-9673doi:10.1016/S0021-9673(96)00910-7
  46. Pei Y., Yang Z. D., Sheng J. Chemical Constituents of Anabasis salsa // Chemistry of Natural CompoundsSpringer-Verlag, 2014. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/S10600-014-1132-4
  47. KOBAYASHI H., KARASAWA H., MIYASE T. et al. Studies on the constituents of Cistanchis Herba. II. Isolation and structures of new iridoids, cistanin and cistachlorin. // Chemical & Pharmaceutical BulletinPharmaceutical Society of Japan, 2011. — ISSN 0009-2363; 1347-5223doi:10.1248/CPB.32.1729
  48. Chu W., Gao P., Li L. Chemical constituents from the leaves of Crataegus pinnatifida Bge // Biochem. Syst. Ecol.Elsevier, 2019. — ISSN 0305-1978; 1873-2925doi:10.1016/J.BSE.2019.103923
  49. Chemical constituents from tubers of Cremastra appendiculata // 中国中药杂志 — 2014. — ISSN 1001-5302doi:10.4268/CJCMM20140217
  50. T Komori Glycosides from Dioscorea bulbifera // ToxiconElsevier, 1997. — ISSN 0041-0101; 1879-3150doi:10.1016/S0041-0101(97)00032-9PMID:9428100
  51. Jefferies P., Knox J., B Scaf Structure elucidation of some ent-clerodane diterpenes from Dodonaea boroniaefolia and Cyanostegia augustifolia // Australian Journal of ChemistryCSIRO Publishing, 2010. — ISSN 0004-9425; 1445-0038doi:10.1071/CH9732199
  52. 52,0 52,1 Shuai S. Flavonoids of Erigeron canadensis // 中国中药杂志 — 2012. — ISSN 1001-5302doi:10.4268/CJCMM20121914
  53. 53,0 53,1 Ahmad V. U. Chemical Constituents of Some Medicinal Plants of Pakistan — 2011. — doi:10.1007/978-3-642-71425-2_1
  54. 54,0 54,1 54,2 54,3 Luu K. T., Matches A. G., Nelson C. J. et al. Characterization of Inhibitory Substances of Tall Fescue on Birdsfoot Trefoil // Crop Science — 2010. — ISSN 0011-183X; 1435-0653doi:10.2135/CROPSCI1989.0011183X002900020034X
  55. DS M., DQ Y., SS Y. New Quinoid Glycosides from Forsythia suspensa // J. Nat. Prod.American Chemical Society, 1998. — ISSN 0163-3864; 1520-6025doi:10.1021/NP970369APMID:9548879
  56. CJ M., JP W. Organic acids from fresh California strawberries. // J. Agric. Food Chem.USA: American Chemical Society, 1975. — ISSN 0021-8561; 1520-5118doi:10.1021/JF60199A018PMID:1150994
  57. Picha D. H. Organic acid determination in sweet potatoes by HPLC // J. Agric. Food Chem.USA: American Chemical Society, 2005. — ISSN 0021-8561; 1520-5118doi:10.1021/JF00064A045
  58. Finnegan R. A., Patel J. K. Constituents of Mammea americana L. Part X. The isolation of some mono- and di-hydroxyxanthones. Observations on the synthesis of 1,5-,3,5-,1,6-, and 1,7-dihydroxyxanthone // Journal of the Chemical Society. Perkin transactions 1 — 2004. — ISSN 0300-922X; 2050-8255doi:10.1039/P19720001896
  59. Study on chemical constituents of Inula cappa // 中国中药杂志 — 2015. — ISSN 1001-5302doi:10.4268/CJCMM20150419
  60. 60,0 60,1 Mašterov I., Suchý V., Uhrín D. et al. Homoisoflavanones and other constituents from Muscari racemosum // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/0031-9422(91)83764-C
  61. Yang S., Shen T., Zhao L. et al. Chemical constituents of Lobelia chinensis. // FitoterapiaElsevier, 2014. — ISSN 0367-326X; 1873-6971; 1971-551Xdoi:10.1016/J.FITOTE.2014.01.007PMID:24444893
  62. NUMATA A., HOKIMOTO K., TAKEMURA T. et al. Plant constituents biologically active to insects. V. Antifeedants for the larvae of the yellow butterfly, Eurema hecabe mandarina, in Osmunda japonica. // Chemical & Pharmaceutical BulletinPharmaceutical Society of Japan, 2011. — ISSN 0009-2363; 1347-5223doi:10.1248/CPB.32.2815
  63. Kang H. S., Choi J. H., Cho W. K. et al. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. // Archives of Pharmacal ResearchSpringer-Verlag, Springer Nature, 2004. — ISSN 0253-6269; 1976-3786doi:10.1007/BF02980143PMID:15357002
  64. Claydon N., Grove J. F., Pople M. Elm bark beetle boring and feeding deterrents from Phomopsis oblonga // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(00)83157-X
  65. Barrero A. F., Oltra J. E., Poyatos J. A. Acidic metabolites from Phycomyces blakesleeanus // PhytochemistryElsevier, 2003. — ISSN 0031-9422; 1873-3700doi:10.1016/0031-9422(96)00146-X
  66. KAZUNO C., MIURA H. Studies on constituent of edible fungi. Part II. Chemical constituents of Pleurotus ostreatus. // Journal of the Japanese Society for Food Science and Technology — 2011. — ISSN 1341-027X; 0029-0394; 1881-6681doi:10.3136/NSKKK1962.32.338
  67. 67,0 67,1 Zhang J., Cui Y. [Chemical constituents from Polygonum multiflorum]. // 中国中药杂志 — 2016. — ISSN 1001-5302doi:10.4268/CJCMM20161721PMID:28920378
  68. W. Greenaway, T. Scaysbrook, F.R. Whatley Phenolic analysis of bud exudate of Populus lasiocarpa by GC/MS // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/0031-9422(88)80758-1
  69. W. Greenaway Compositions of Bud and Leaf Exudates of Some Populus Species Compared // Z. Naturforsch. C Bio. Sci. / J. SeibelWalter de Gruyter, 2018. — ISSN 0939-5075; 1865-7125doi:10.1515/ZNC-1992-0602
  70. Poyrazoğlu E., Gökmen V., Artιk N. Organic Acids and Phenolic Compounds in Pomegranates (Punica granatum L.) Grown in Turkey // J. Food Comp. Anal.Elsevier, 2005. — ISSN 0889-1575; 1096-0481doi:10.1006/JFCA.2002.1071
  71. Wang X. Q., Peng Y., Peng B. et al. Chemical Constituents of Paraboea glutinosa // Chemistry of Natural CompoundsSpringer-Verlag, 2014. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/S10600-014-1130-6
  72. Morota T., Nishimura H., Sasaki H. et al. Five cyclopentanoid monoterpenes from Rehmannia glutinosa // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(00)97989-5
  73. Chimnoi N. Constituents of the leaves of Macaranga tanarius // J. Nat. Prod.American Chemical Society, 2005. — ISSN 0163-3864; 1520-6025doi:10.1021/NP0500272PMID:15974621
  74. Shilling D. G., Jones L. A., A. Douglas Worsham et al. Isolation and identification of some phytotoxic compounds from aqueous extracts of rye (Secale cereale L.) // J. Agric. Food Chem.USA: American Chemical Society, 2005. — ISSN 0021-8561; 1520-5118doi:10.1021/JF00070A011
  75. Wang L., Hu L. Chemical Constituents of Siegesbeckia orientalis L. // Journal of Integrative Plant BiologyWiley-Blackwell, 2006. — ISSN 1672-9072; 1744-7909; 0577-7496doi:10.1111/J.1744-7909.2006.00279.X
  76. Liu M., Zhu G., Liang F. et al. [Studies on chemical constituents of rhizomes of Smilax trinervula]. // 中国中药杂志 — 2016. — ISSN 1001-5302doi:10.4268/CJCMM20160315PMID:28868862
  77. Wang R., Yang X., Ma C. et al. Alkaloids from the Seeds of Sterculia lychnophora (Pangdahai). // ChemInformWiley Information Services GmbH, Fachinformationszentrum Chemie GmbH (FIZ CHEMIE Berlin), 2005. — ISSN 0931-7597; 1522-2667; 1431-5890doi:10.1002/CHIN.200338184
  78. KM W., JL M., RL J. et al. Identification of 3-hydroxy-3-methylglutaric acid (HMG) as a hypoglycemic principle of Spanish moss (Tillandsia usneoides). // J. Nat. Prod.American Chemical Society, 1995. — ISSN 0163-3864; 1520-6025doi:10.1021/NP50122A023PMID:7595594
  79. Nakatani M., Tailri M., Kaga T. et al. A dihydroxycyclopentadienone and other constituents from the seeds of Trifolium repens // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(00)98014-2
  80. 80,0 80,1 T Hase Three iridoid glycosides from Viburnum furcatum // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(00)81125-5
  81. Yang M., Kuo P., Hwang T. et al. Anti-inflammatory principles from Cordyceps sinensis // J. Nat. Prod.American Chemical Society, 2011. — ISSN 0163-3864; 1520-6025doi:10.1021/NP100902FPMID:21848266
  82. Jones O. Mixtures of similarly acting compounds in Daphnia magna: from gene to metabolite and beyond // Environ. Int.Elsevier, 2010. — ISSN 0160-4120; 1873-6750doi:10.1016/J.ENVINT.2009.12.006PMID:20117838
  83. Wishart D. S., Mandal R. The human saliva metabolome // MetabolomicsSpringer-Verlag, 2015. — ISSN 1573-3882; 1573-3890doi:10.1007/S11306-015-0840-5
  84. Zheng Y., Deng Y., Wu F. Ardisinones A-E, novel diarylundecanones from Ardisia arborescens. // J. Nat. Prod.American Chemical Society, 2004. — ISSN 0163-3864; 1520-6025doi:10.1021/NP040041ZPMID:15387676
  85. SASAKI T. ÜBER DIE BESTANDTEILE DES ÄTHER-SOWIE ALKOHOLEXTRAKTS DES “MATSUDAKE”-PILZES (ARMILLARIA EDODES) // J. Biochem.OUP, 2017. — ISSN 0021-924X; 1756-2651doi:10.1093/OXFORDJOURNALS.JBCHEM.A125810
  86. F.R. Stermitz, W.T. Lowry, F.A. Norris et al. Aliphatic nitro compounds from Astragalus species // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/S0031-9422(00)88463-0
  87. Ayer W. A., Browne L. M., Feng M. et al. The chemistry of the blue stain fungi. Part 1. Some metabolites of Ceratocystis species associated with mountain pine beetle infected lodgepole pine // Can. J. Chem.NRC Research Press, 2006. — ISSN 0008-4042; 1480-3291doi:10.1139/V86-149
  88. Sakaki T., Ichihara A., Sakamura S. Isolation of Fulvic Acid fromCercospora beticola // Agricultural and biological chemistry — 2016. — ISSN 0002-1369; 1881-1280doi:10.1080/00021369.1981.10864692
  89. Zwenger C. Ueber Chelidoninsäure, eine neue Säure aus Chelidonium majus // Justus Liebigs Annalen der Chemie — 2007. — ISSN 0075-4617doi:10.1002/JLAC.18601140306
  90. Lee K. Y., Sung S. H., Kim Y. C. New Acetylcholinesterase-Inhibitory Pregnane Glycosides of Cynanchum atratum Roots // Helvetica Chimica ActaWiley, 2003. — ISSN 0018-019X; 1522-2675doi:10.1002/HLCA.200390047
  91. P KARRER, E MATTER Eine Untersuchung der sauren Bestandteile von Digitalis purpurea L // Helvetica Chimica ActaWiley, 1948. — ISSN 0018-019X; 1522-2675doi:10.1002/HLCA.19480310317PMID:18915716
  92. Thorsell W., Hasselquist H., Theander O. et al. Some Acids Belonging to the Citric Acid Cycle in the Liver Fluke, Fasciola hepatica, L. // Acta Chemica ScandinavicaRSC, 2008. — ISSN 0904-213X; 0001-5393doi:10.3891/ACTA.CHEM.SCAND.17-2129
  93. B.E. Cross, R.H.B. Galt, J.R. Hanson New metabolites of Gibberella fujikuroi—I // TetrahedronElsevier, 2002. — ISSN 0040-4020; 1464-5416doi:10.1016/S0040-4020(01)92692-4
  94. Schmalfuss H., Keitel K. Vorarbeiten für den Nachweis von Säuren in Pflanzen. 2. Mitteilung. Über Pflanzensäuren aus Glaucium und über dessen Blütenfarbstoffe. // Hoppe-Seyler's Zeitschrift für physiologische ChemieB: Verlag Walter de Gruyter, 2011. — ISSN 0018-4888doi:10.1515/BCHM2.1924.138.3-6.156
  95. Dunstan W. R., Henry T. A. XVI.—The volatile constituents of the wood of Goupia tomentosa // Journal of the Chemical Society. Transactions — 2004. — ISSN 0368-1645; 2050-5450doi:10.1039/CT8987300226
  96. Olennikov D. N., Agafonova S. V., Nazarova A. V. et al. Organic acids and carbohydrates from Laetiporus sulphureus fruiting bodies // Chemistry of Natural CompoundsSpringer-Verlag, 2009. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/S10600-009-9180-X
  97. DV R., EV R. Phytochemical investigations on the leaves of Notonia grandiflora // Planta Med.Thieme Medical Publishers (Germany), 1972. — ISSN 0032-0943; 1439-0221doi:10.1055/S-0028-1099605PMID:5081820
  98. Wei W., Pan Y., Chen Y. et al. Carboxylic Acids from Phyllanthus urinaria // Chemistry of Natural CompoundsSpringer-Verlag, 2005. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/S10600-005-0064-4
  99. Olennikov D. N., Mikhailova T. M., Tankhaeva L. M. et al. Organic Acids of Medicinal Plants. 1. Plantago major // Chemistry of Natural CompoundsSpringer-Verlag, 2005. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/S10600-005-0180-1
  100. Franzen H., Helwert F. Über die chemischen Bestandteile grüner Pflanzen. 20. Mitteilung. Über die Säuren der Kirschen (Prunus avium). // Hoppe-Seyler's Zeitschrift für physiologische ChemieB: Verlag Walter de Gruyter, 2011. — ISSN 0018-4888doi:10.1515/BCHM2.1922.122.1-3.46
  101. Wang C., A.Mahir Pamukcu, Bryan G. T. Isolation of fumaric acid, succinic acid, astragalin isoquercitrin and tiliroside from Pteridium aquilinum // PhytochemistryElsevier, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/0031-9422(73)85140-4
  102. Franzen H., Helwert F. Über die chemischen Bestandteile grüner Pflanzen. XXII. Mitteilung. Über das Vorkommen von Bernsteinsäure und Oxalsäure in den Johannisbeeren (Ribes rubrum). // Hoppe-Seyler's Zeitschrift für physiologische ChemieB: Verlag Walter de Gruyter, 2011. — ISSN 0018-4888doi:10.1515/BCHM2.1923.124.1-2.65
  103. Chirikova N. K., Olennikov D. N., Rokhin A. V. Organic acids from medicinal plants. 4. Scutellaria baicalensis // Chemistry of Natural CompoundsSpringer-Verlag, 2008. — ISSN 0009-3130; 1573-8388; 0023-1150doi:10.1007/S10600-008-0023-Y
  104. Hartwig Franzen †, Kaiser H. Über die chemischen Bestandteile grüner Pflanzen. XXVIII. Mitteilung. Über die durch Bleiacetat fällbaren Säuren der Tamarinden (Tamarindus indica). // Hoppe-Seyler's Zeitschrift für physiologische ChemieB: Verlag Walter de Gruyter, 2011. — ISSN 0018-4888doi:10.1515/BCHM2.1923.129.1-3.80