ATF4

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/ATF4 latin yazuında])
ATF4
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген ATF4[d][1]
Молекулярная функция ДНК-связывающий[d][2], sequence-specific DNA binding[d][2], DNA-binding transcription factor activity[d][2][2], DNA-binding transcription activator activity, RNA polymerase II-specific[d][2][3][4], transcription factor binding[d][2][4], RNA polymerase II cis-regulatory region sequence-specific DNA binding[d][2][4], core promoter sequence-specific DNA binding[d][2], protein C-terminus binding[d][2][4], связывание с белками плазмы[d][5][6][7][…], leucine zipper domain binding[d][8], protein heterodimerization activity[d][9], DNA-binding transcription factor activity[d][10][4][4][…], ДНК-связывающий[d][4][4][4][…], core promoter sequence-specific DNA binding[d][3][3], sequence-specific DNA binding[d][11], protein kinase binding[d][12], DNA-binding transcription factor activity, RNA polymerase II-specific[d][13][13][3][…], RNA polymerase II cis-regulatory region sequence-specific DNA binding[d][4][4], RNA polymerase II transcription regulatory region sequence-specific DNA binding[d][14] һәм DNA-binding transcription factor activity, RNA polymerase II-specific[d][15][15][4][…]
Күзәнәк компоненты цитоплазма[2][2], ATF1-ATF4 transcription factor complex[d][2], ATF4-CREB1 transcription factor complex[d][2], transcription regulator complex[d][2][4], dendrite membrane[d][2][4], төш[2][2], Lewy body core[d][16], nuclear periphery[d][16], мембрана[d][4], күзәнәк мембраны[d][4], нуклеоплазма[d][4], центр организации микротрубочек[d][4], neuron projection[d][16], цитоскелет[d][4], CHOP-ATF4 complex[d][9][7][8], ATF4-CREB1 transcription factor complex[d][4][17], цитоплазма[4][4][4][…], төш[3][3][3][…], ATF1-ATF4 transcription factor complex[d][4][17], центросома[d][12], protein-containing complex[d][12], төш[4][4][4][…] һәм RNA polymerase II transcription regulator complex[d][4]
Биологический процесс gamma-aminobutyric acid signaling pathway[d][2][4], глюконеогенез[d][2], ДНК-зависимая регуляция транскрипции[d][2][2], positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress[d][2], regulation of transcription by RNA polymerase II[d][2][2][3][…], negative regulation of oxidative stress-induced neuron death[d][2], cellular response to amino acid starvation[d][2], mRNA transcription by RNA polymerase II[d][2], circadian regulation of gene expression[d][2], response to endoplasmic reticulum stress[d][2], PERK-mediated unfolded protein response[d][2], response to manganese-induced endoplasmic reticulum stress[d][2][4], ДНК-зависимая позитивная регуляция транскрипции[d][2], positive regulation of neuron apoptotic process[d][2], intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress[d][2], positive regulation of gene expression[d][2], positive regulation of transcription from RNA polymerase II promoter in response to oxidative stress[d][2], циркадный ритм[d][2][4], negative regulation of potassium ion transport[d][2][4], положительная регуляция транскрипции РНК полимеразой II промотор[d][2], positive regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance[d][18], cellular response to glucose starvation[d][11], negative regulation of translational initiation in response to stress[d][4], ритмический процесс[d][4], cellular response to UV[d][4], positive regulation of transcription from RNA polymerase II promoter in response to stress[d][19], cellular amino acid metabolic process[d][10], transcription by RNA polymerase II[d][4], транскрипция, ДНК-зависимая[d][3], positive regulation of gene expression[d][20][21][4], positive regulation of apoptotic process[d][16], positive regulation of vascular endothelial growth factor production[d][11], positive regulation of transcription by RNA polymerase I[d][11], положительная регуляция транскрипции РНК полимеразой II промотор[d][4][22][4][…], positive regulation of neuron apoptotic process[d][4][4], positive regulation of transcription from RNA polymerase II promoter in response to oxidative stress[d][23][24][3], intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress[d][4][4], positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress[d][24][3][25], глюконеогенез[d][4][4], PERK-mediated unfolded protein response[d][4][26][27][…], ДНК-зависимая регуляция транскрипции[d][4][4][4], negative regulation of oxidative stress-induced neuron death[d][16][4], cellular response to amino acid starvation[d][4][4], circadian regulation of gene expression[d][4][4], ДНК-зависимая позитивная регуляция транскрипции[d][28][4][29][…], mRNA transcription by RNA polymerase II[d][4][4], response to endoplasmic reticulum stress[d][20][4][30], cellular response to dopamine[d][21], response to toxic substance[d][4], neuron differentiation[d][4], cellular response to oxygen-glucose deprivation[d][4], positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway[d][3], regulation of transcription by RNA polymerase II[d][4][4][14], cellular calcium ion homeostasis[d][4], positive regulation of transcription from RNA polymerase II promoter in response to oxidative stress[d][16][31][4][…], positive regulation of biomineral tissue development[d][4], negative regulation of cold-induced thermogenesis[d][32][4], positive regulation of vascular associated smooth muscle cell apoptotic process[d][4], positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress[d][31][4][17][…] һәм positive regulation of sodium-dependent phosphate transport[d][4]

ATF4 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[33][34]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 GOA
  3. 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 3,11 GOA
  4. 4,00 4,01 4,02 4,03 4,04 4,05 4,06 4,07 4,08 4,09 4,10 4,11 4,12 4,13 4,14 4,15 4,16 4,17 4,18 4,19 4,20 4,21 4,22 4,23 4,24 4,25 4,26 4,27 4,28 4,29 4,30 4,31 4,32 4,33 4,34 4,35 4,36 4,37 4,38 4,39 4,40 4,41 4,42 4,43 4,44 4,45 4,46 4,47 4,48 4,49 4,50 4,51 4,52 4,53 4,54 4,55 4,56 4,57 4,58 4,59 4,60 4,61 4,62 4,63 4,64 4,65 4,66 4,67 4,68 4,69 GOA
  5. Dricot A., Barabási A., Tavernier J. et al. A proteome-scale map of the human interactome network // CellCell Press, Elsevier BV, 2014. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2014.10.050PMID:25416956
  6. Bosak S., Hirozane-Kishikawa T., Dricot A. et al. Towards a proteome-scale map of the human protein–protein interaction network, Towards a proteome-scale map of the human protein-protein interaction network // Nature / M. SkipperNPG, Springer Science+Business Media, 2005. — ISSN 1476-4687; 0028-0836doi:10.1038/NATURE04209PMID:16189514
  7. 7,0 7,1 Su N., Kilberg M. S. C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2008. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M806874200PMID:18940792
  8. 8,0 8,1 F Gachon, G Gaudray, S Thébault et al. The cAMP response element binding protein-2 (CREB-2) can interact with the C/EBP-homologous protein (CHOP) // FEBS LettersElsevier BV, 2001. — ISSN 0014-5793; 1873-3468doi:10.1016/S0014-5793(01)02646-1PMID:11478948
  9. 9,0 9,1 Hattori T., Ohoka N. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death // EMBO J.NPG, 2005. — ISSN 0261-4189; 1460-2075doi:10.1038/SJ.EMBOJ.7600596PMID:15775988
  10. 10,0 10,1 Rutkowski T. All roads lead to ATF4 // Developmental CellElsevier BV, 2003. — 3 p. — ISSN 1534-5807; 1878-1551doi:10.1016/S1534-5807(03)00100-XPMID:12689582
  11. 11,0 11,1 11,2 11,3 Wang Y., Alam G. N., Ning Y. et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway // Cancer Res. / G. C. PrendergastAmerican Association for Cancer Research, 2012. — ISSN 0008-5472; 1538-7445doi:10.1158/0008-5472.CAN-12-0474PMID:22915762
  12. 12,0 12,1 12,2 Meirelles G. V., Silva J. C. d., Adriana Franco Paes Leme et al. Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalization with proteins at the centrosome // J. Proteome Res. / J. YatesACS, 2010. — ISSN 1535-3893; 1535-3907doi:10.1021/PR100562WPMID:20873783
  13. 13,0 13,1 Vaquerizas J. M., Teichmann S., Kummerfeld S. K. A census of human transcription factors: function, expression and evolution // Nature reviews. GeneticsUK: NPG, 2009. — ISSN 1471-0056; 1471-0064doi:10.1038/NRG2538PMID:19274049
  14. 14,0 14,1 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  15. 15,0 15,1 Vaquerizas J. M., Teichmann S., Kummerfeld S. K. A census of human transcription factors: function, expression and evolution // Nature reviews. GeneticsUK: NPG, 2009. — ISSN 1471-0056; 1471-0064doi:10.1038/NRG2538PMID:19274049
  16. 16,0 16,1 16,2 16,3 16,4 16,5 Sulzer D. ATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin // J. Neurosci. / M. PicciottoSociety for Neuroscience, 2013. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.2292-12.2013PMID:23392669
  17. 17,0 17,1 17,2 Abcouwer S. F., Lee A. S. Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M303619200PMID:12871976
  18. S Oyadomari, M Mori Roles of CHOP/GADD153 in endoplasmic reticulum stress // Cell Death & DifferentiationNPG, 2004. — ISSN 1350-9047; 1476-5403doi:10.1038/SJ.CDD.4401373PMID:14685163
  19. Klinkenberg M. Loss of lysosome-associated membrane protein 3 (LAMP3) enhances cellular vulnerability against proteasomal inhibition // Eur. J. Cell Biol.Elsevier BV, 2015. — ISSN 0171-9335; 0070-2463doi:10.1016/J.EJCB.2015.01.003PMID:25681212
  20. 20,0 20,1 Maehara Y. Role of activating transcription factor 3 (ATF3) in endoplasmic reticulum (ER) stress-induced sensitization of p53-deficient human colon cancer cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through up-regulation of death receptor 5 (DR5) by zerumbone and celecoxib // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2014. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M114.558890PMID:24939851
  21. 21,0 21,1 Minchin R. F., Butcher N. J. Cytosolic sulfotransferase 1A3 is induced by dopamine and protects neuronal cells from dopamine toxicity: role of D1 receptor-N-methyl-D-aspartate receptor coupling // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2013. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M113.493239PMID:24136195
  22. Abcouwer S. F. The oxidative stressor arsenite activates vascular endothelial growth factor mRNA transcription by an ATF4-dependent mechanism // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2005. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M411275200PMID:15788408
  23. Sulzer D. ATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin // J. Neurosci. / M. PicciottoSociety for Neuroscience, 2013. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.2292-12.2013PMID:23392669
  24. 24,0 24,1 J Tatzelt, Park D. S., Winklhofer K. F. et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress // Cell Death & DifferentiationNPG, 2011. — ISSN 1350-9047; 1476-5403doi:10.1038/CDD.2010.142PMID:21113145
  25. Abcouwer S. F., Lee A. S. Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M303619200PMID:12871976
  26. Brown M. K., Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases // Frontiers in PhysiologyFrontiers Media, 2012. — ISSN 1664-042Xdoi:10.3389/FPHYS.2012.00263PMID:22934019
  27. Martinon F., Glimcher L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1α // Physiological Reviews / D. BrownUSA: American Physiological Society, 2011. — 680 p. — ISSN 0031-9333; 1522-1210doi:10.1152/PHYSREV.00001.2011PMID:22013210
  28. F Wong-Staal Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4) // OncogeneNPG, 1997. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1201119PMID:9190894
  29. Siu F., Bain P. J., LeBlanc-Chaffin R. et al. ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2002. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M201959200PMID:11960987
  30. Chami M., Oulès B., Rizzuto R. et al. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress // Mol. CellCell Press, Elsevier BV, 2008. — 11 p. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2008.11.014PMID:19061639
  31. 31,0 31,1 J Tatzelt, Park D. S., Winklhofer K. F. et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress // Cell Death & DifferentiationNPG, 2011. — ISSN 1350-9047; 1476-5403doi:10.1038/CDD.2010.142PMID:21113145
  32. Wang C., Xia T., Du Y. et al. Effects of ATF4 on PGC1α expression in brown adipose tissue and metabolic responses to cold stress // Metabolism: clinical and experimentalElsevier BV, 2012. — ISSN 0026-0495; 1532-8600doi:10.1016/J.METABOL.2012.07.017PMID:22980225
  33. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  34. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)