Эчтәлеккә күчү

CD14

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/CD14 latin yazuında])
CD14
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген CD14[d][1]
Молекуляр функция lipopolysaccharide binding[d][2], opsonin receptor activity[d][3], lipoteichoic acid binding[d][4], связывание с белками плазмы[d][5][6][7][…], peptidoglycan immune receptor activity[d][8], lipopeptide binding[d][9] һәм lipopolysaccharide binding[d][4][10]
Күзәнәк компоненты Гольджи аппараты[11][6], мембрана[d][11], күзәнәк мембранасы[d][11][12][11][…], күзәнәк тышындагы өлкә[d][11][11], күзәнәк өслеге[d][13], lipopolysaccharide receptor complex[d][14], anchored component of external side of plasma membrane[d][15], липидный рафт[d][13][13][16], anchored component of membrane[d][11], endosome membrane[d][11], экзосома[d][17][18][19][…], наружная сторона клеточной мембраны[d][13], күзәнәк тышындагы мохит[d][13][20], secretory granule membrane[d][11], күзәнәк тышындагы мохит[d][11][21], наружная сторона клеточной мембраны[d][11][10], күзәнәк өслеге[d][11][10], липидный рафт[d][11][11][6][…], lipopolysaccharide receptor complex[d][22][10] һәм экзосома[d][23][24][25]
Биологик процесс toll-like receptor TLR1:TLR2 signaling pathway[d][11], response to bacterium[d][11], toll-like receptor 4 signaling pathway[d][13][13][13], immune system process[d][11], cellular response to diacyl bacterial lipopeptide[d][6], positive regulation of interferon-gamma production[d][13][13], response to magnesium ion[d][11], response to heat[d][11], response to electrical stimulus[d][11], MyD88-dependent toll-like receptor signaling pathway[d][11], рецепторно-опосредованный эндоцитоз[d][11], cellular response to triacyl bacterial lipopeptide[d][6], TRIF-dependent toll-like receptor signaling pathway[d][11], response to tumor necrosis factor[d][11], positive regulation of endocytosis[d][11], cell surface receptor signaling pathway[d][8], response to lipopolysaccharide[d][11], cellular response to lipoteichoic acid[d][4], Фагоцитоз[12], positive regulation of tumor necrosis factor production[d][26][11][4][…], воспалительная реакция[d][13][13], response to ethanol[d][11], I-kappaB kinase/NF-kappaB signaling[d][11], toll-like receptor TLR6:TLR2 signaling pathway[d][11], cellular response to lipopolysaccharide[d][27][13][2], response to molecule of bacterial origin[d][11], positive regulation of type I interferon production[d][13], lipopolysaccharide-mediated signaling pathway[d][13], MyD88-independent toll-like receptor signaling pathway[d][11], апоптоз[d][12], врождённый иммунитет[d][11], Некроптоз[d][11], negative regulation of MyD88-independent toll-like receptor signaling pathway[d][11], apoptotic signaling pathway[d][11], toll-like receptor signaling pathway[d][11], neutrophil degranulation[d][11], positive regulation of NIK/NF-kappaB signaling[d][28], воспалительная реакция[d][11][11][10], lipopolysaccharide-mediated signaling pathway[d][11][10], positive regulation of interferon-gamma production[d][11][11][10], toll-like receptor 4 signaling pathway[d][11][11][11][…], cellular response to lipopolysaccharide[d][26][11][4][…], positive regulation of NIK/NF-kappaB signaling[d][9][10] һәм positive regulation of type I interferon production[d][11][10]
Изображение Gene Atlas

CD14 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[29][30]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,0 2,1 Nicolas W J Schröder, Morath S., Alexander C. et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M212829200PMID:12594207
  3. Schumann R. R., Leong S. R., Flaggs G. W. et al. Structure and function of lipopolysaccharide binding protein // Science / H. ThorpNorthern America: AAAS, 1990. — ISSN 0036-8075; 1095-9203doi:10.1126/SCIENCE.2402637PMID:2402637
  4. 4,0 4,1 4,2 4,3 4,4 Nicolas W J Schröder, Morath S., Alexander C. et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M212829200PMID:12594207
  5. Silveyra P., E. Scott Halstead, Mccormack F. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation // PLOS ONE / PLOS ONE EditorsPLoS, 2015. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0126576PMID:25965346
  6. 6,0 6,1 6,2 6,3 6,4 Triantafilou M., Frederick G J Gamper, Haston R. M. et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2006. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M602794200PMID:16880211
  7. Tanaka M., Murakami K., Ozaki S. et al. DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1--analysis of their binding with TGF-β superfamily proteins // FEBS J.Wiley-Blackwell, 2010. — ISSN 1742-464X; 0014-2956; 1742-4658; 1432-1033doi:10.1111/J.1742-4658.2010.07816.XPMID:20860622
  8. 8,0 8,1 D Gupta, Kirkland T. N., S Viriyakosol et al. CD14 is a cell-activating receptor for bacterial peptidoglycan // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1996. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.271.38.23310PMID:8798531
  9. 9,0 9,1 Schröder N. W. J., Heine H., Alexander C. et al. Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses // J. Immunol.Baltimore: 2004. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.173.4.2683PMID:15294986
  10. 10,0 10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  11. 11,00 11,01 11,02 11,03 11,04 11,05 11,06 11,07 11,08 11,09 11,10 11,11 11,12 11,13 11,14 11,15 11,16 11,17 11,18 11,19 11,20 11,21 11,22 11,23 11,24 11,25 11,26 11,27 11,28 11,29 11,30 11,31 11,32 11,33 11,34 11,35 11,36 11,37 11,38 11,39 11,40 11,41 11,42 11,43 11,44 11,45 11,46 11,47 GOA
  12. 12,0 12,1 12,2 Devitt A. Human CD14 mediates recognition and phagocytosis of apoptotic cells // Nature / M. SkipperNPG, Springer Science+Business Media, 1998. — ISSN 1476-4687; 0028-0836doi:10.1038/33169PMID:9548256
  13. 13,00 13,01 13,02 13,03 13,04 13,05 13,06 13,07 13,08 13,09 13,10 13,11 13,12 13,13 13,14 GOA
  14. Christen U. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M009164200PMID:11274165
  15. Haziot A, Chen S, Ferrero E et al. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage // J. Immunol.Baltimore: 1988. — ISSN 0022-1767; 1550-6606PMID:3385210
  16. Triantafilou M., Frederick G J Gamper, Haston R. M. et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2006. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M602794200PMID:16880211
  17. Farina A., Lane L., Lescuyer P. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine // Journal of ProteomicsElsevier BV, 2013. — ISSN 1874-3919; 0165-022Xdoi:10.1016/J.JPROT.2013.01.012PMID:23376485
  18. Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450doi:10.1681/ASN.2008040406PMID:19056867
  19. Gonzalez-Begne M., Lu B., Han X. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT) // J. Proteome Res. / J. YatesACS, 2009. — ISSN 1535-3893; 1535-3907doi:10.1021/PR800658CPMID:19199708
  20. Palmer D. J., Kelly V. C., Smit A. et al. Human colostrum: identification of minor proteins in the aqueous phase by proteomics // Proteomics / L. StimsonWiley, 2006. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.200500558PMID:16502470
  21. Palmer D. J., Kelly V. C., Smit A. et al. Human colostrum: identification of minor proteins in the aqueous phase by proteomics // Proteomics / L. StimsonWiley, 2006. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.200500558PMID:16502470
  22. Christen U. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M009164200PMID:11274165
  23. Gonzalez-Begne M., Lu B., Han X. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT) // J. Proteome Res. / J. YatesACS, 2009. — ISSN 1535-3893; 1535-3907doi:10.1021/PR800658CPMID:19199708
  24. Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450doi:10.1681/ASN.2008040406PMID:19056867
  25. Sinha A., Kislinger T. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine // Proteomics / L. StimsonWiley, 2013. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.201200561PMID:23533145
  26. 26,0 26,1 Goyert S. M. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice // ImmunityCell Press, Elsevier BV, 1996. — ISSN 1074-7613; 1097-4180doi:10.1016/S1074-7613(00)80254-XPMID:8612135
  27. Goyert S. M. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice // ImmunityCell Press, Elsevier BV, 1996. — ISSN 1074-7613; 1097-4180doi:10.1016/S1074-7613(00)80254-XPMID:8612135
  28. Schröder N. W. J., Heine H., Alexander C. et al. Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses // J. Immunol.Baltimore: 2004. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.173.4.2683PMID:15294986
  29. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  30. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)