DDX58

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/DDX58 latin yazuında])
DDX58
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген RIG-I[d][1]
Молекулярная функция нуклеотид-связывающий[d][2], helicase activity[d][2], zinc ion binding[d][3], связывание с ионом металла[d][2], связывание с белками плазмы[d][4][5][6][…], single-stranded RNA binding[d][7][2], связывание похожих белков[d][8], RNA binding[d][2], double-stranded RNA binding[d][9][7][2][…], double-stranded DNA binding[d][2], гидролазная активность[d][2], АТФ-связанные[d][2][2], nucleic acid binding[d][2] һәм ubiquitin protein ligase binding[d][10]
Күзәнәк компоненты Цитоплазма[2][8], cell projection[d][2], мембрана[d][2], bicellular tight junction[d][2][11], күзәнәк мембраны[d][2], ruffle membrane[d][2][11], Межклеточные контакты[d][2], actin cytoskeleton[d][11], Цитоскелет[d][2] һәм цитозоль[d][2][2]
Биологический процесс regulation of cell migration[d][11], response to exogenous dsRNA[d][12], positive regulation of interferon-alpha production[d][13][14], immune system process[d][2], response to virus[d][15][2], cytoplasmic pattern recognition receptor signaling pathway in response to virus[d][15], positive regulation of gene expression[d][16], positive regulation of granulocyte macrophage colony-stimulating factor production[d][16], positive regulation of interleukin-8 production[d][16], positive regulation of interleukin-6 production[d][16], negative regulation of type I interferon production[d][2], detection of virus[d][9], вирусный процесс[d][2], Врождённый иммунитет[d][2][13][17][…], положительная регуляция транскрипции РНК полимеразой II промотор[d][9], RIG-I signaling pathway[d][7], regulation of type III interferon production[d][15], positive regulation of defense response to virus by host[d][13], positive regulation of interferon-beta production[d][13][17][7][…], protein deubiquitination[d][2], positive regulation of response to cytokine stimulus[d][18], cellular response to exogenous dsRNA[d][18], defense response to virus[d][12], positive regulation of DNA-binding transcription factor activity[d][9], positive regulation of myeloid dendritic cell cytokine production[d][2][2], response to exogenous dsRNA[d][2][2] һәм defense response to virus[d][2][2]

DDX58 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[19][20]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 GOA
  3. Hopfner K., Conzelmann K., Cui S. et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I // Mol. CellCell Press, Elsevier BV, 2008. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2007.10.032PMID:18243112
  4. Oshiumi H. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling // Mol. Cell. Biol.ASM, 2011. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.01368-10PMID:21791617
  5. Oshiumi H., Matsumoto M., Hatakeyama S. et al. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2009. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M804259200PMID:19017631
  6. Cui J., Zhu L., Xia X. et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways // CellCell Press, Elsevier BV, 2010. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2010.03.040PMID:20434986
  7. 7,0 7,1 7,2 7,3 Bamming D., Horvath C. M. Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2009. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M807365200PMID:19211564
  8. 8,0 8,1 Miyazaki T., Fujikura D. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses // Nat. Immunol.USA: NPG, 2011. — ISSN 1529-2908; 1529-2916doi:10.1038/NI.1963PMID:21102435
  9. 9,0 9,1 9,2 9,3 García-Sastre A., Cárdenas W. B., Martínez-Sobrido L. et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus // J. Virol.ASM, 2007. — ISSN 0022-538X; 1098-5514; 1070-6321doi:10.1128/JVI.01265-06PMID:17079289
  10. Shi Z. A non-canonical role of the p97 complex in RIG-I antiviral signaling // EMBO J.NPG, 2015. — ISSN 0261-4189; 1460-2075doi:10.15252/EMBJ.201591888PMID:26471729
  11. 11,0 11,1 11,2 11,3 Mukherjee A., Weber C. R., Morosky S. A. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2009. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M807547200PMID:19122199
  12. 12,0 12,1 GOA
  13. 13,0 13,1 13,2 13,3 Hornung V., Latz E., Hartmann G. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate // Nat. Immunol.USA: NPG, 2009. — ISSN 1529-2908; 1529-2916doi:10.1038/NI.1779PMID:19609254
  14. Akira S., Tuschl T., Hornung V. et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus // ImmunityCell Press, Elsevier BV, 2009. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2009.05.008PMID:19576794
  15. 15,0 15,1 15,2 Gale M. Immune signaling by RIG-I-like receptors // ImmunityCell Press, Elsevier BV, 2011. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2011.05.003PMID:21616437
  16. 16,0 16,1 16,2 16,3 Sathe A. TLR9 and RIG-I signaling in human endocervical epithelial cells modulates inflammatory responses of macrophages and dendritic cells in vitro // PLOS ONE / PLOS ONE EditorsPLoS, 2014. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0083882PMID:24409285
  17. 17,0 17,1 MacMillan J. B., Chen Z. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway // CellCell Press, Elsevier BV, 2009. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2009.06.015PMID:19631370
  18. 18,0 18,1 Zhang Z., Yuan B., Lu N. et al. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells // J. Immunol.Baltimore: 2011. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.1101307PMID:21957149
  19. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  20. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)