HMGB1

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/HMGB1 latin yazuında])
HMGB1
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген HMGB1[d][1]
Молекулярная функция DNA-binding transcription factor activity[d][2], bubble DNA binding[d][3], DNA polymerase binding[d][4], C-X-C chemokine binding[d][5], transcription factor binding[d][2], phosphatidylserine binding[d][6], lipopolysaccharide binding[d][7], активность лиазы[d][4], single-stranded DNA binding[d][3], damaged DNA binding[d][3][4], связывание с белками плазмы[d][8][9][10][…], DNA binding, bending[d][11][11][2], supercoiled DNA binding[d][3], ДНК-связывающий[d][3][3], four-way junction DNA binding[d][3], RAGE receptor binding[d][3], chemoattractant activity[d][3], RNA binding[d][12][13], double-stranded DNA binding[d][11][11], double-stranded RNA binding[d][11], single-stranded RNA binding[d][11], cytokine activity[d][11][11], calcium-dependent protein kinase regulator activity[d][11], protein kinase activator activity[d][11], double-stranded DNA binding[d][3], transcription coactivator activity[d][14], RNA binding[d][15][16], cytokine activity[d][3], integrin binding[d][17], transcription factor binding[d][14][18] һәм DNA binding, bending[d][3][3][14][…]
Күзәнәк компоненты цитоплазма[11][11], эндосома[d][3], мембрана[d][3], transcription repressor complex[d][19], внеклеточная область[d][3][3], төш[11][11][11][…], күзәнәк өслеге[d][20], күзәнәк мембраны[d][3], нуклеоплазма[d][3], Хромосома[3], condensed chromosome[d][21], endoplasmic reticulum-Golgi intermediate compartment[d][3], secretory granule lumen[d][3], ficolin-1-rich granule lumen[d][3], внеклеточное пространство[d][11][22], early endosome[d][11], neuron projection[d][11], внеклеточное пространство[d][3][20], төш[3][3][3][…], цитоплазма[3][18] һәм alphav-beta3 integrin-HMGB1 complex[d][17]
Биологический процесс T-helper 1 cell activation[d][23], apoptotic DNA fragmentation[d][3], adaptive immune response[d][3], regulation of transcription by RNA polymerase II[d][24], positive regulation of DNA ligation[d][3], positive regulation of JNK cascade[d][25], cellular response to DNA damage stimulus[d][3], apoptotic cell clearance[d][6], positive regulation of cysteine-type endopeptidase activity involved in apoptotic process[d][26], positive regulation of toll-like receptor 9 signaling pathway[d][3], negative regulation of RNA polymerase II transcription preinitiation complex assembly[d][27], positive regulation of dendritic cell differentiation[d][28], positive regulation of DNA binding[d][14][9], neuron projection development[d][3], negative regulation of blood vessel endothelial cell migration[d][29], positive regulation of interleukin-12 production[d][28], positive regulation of monocyte chemotaxis[d][5], activation of innate immune response[d][30], DNA ligation involved in DNA repair[d][3], врождённый иммунитет[d][3][3], воспалительная реакция[d][3][31], репарация ДНК[d][3], positive regulation of MAPK cascade[d][25], positive regulation of activated T cell proliferation[d][28], DNA geometric change[d][3], DNA recombination[d][11][11], inflammatory response to antigenic stimulus[d][20], positive regulation of interleukin-10 production[d][23], immune system process[d][3], negative regulation of transcription by RNA polymerase II[d][32], regulation of restriction endodeoxyribonuclease activity[d][4], хемотаксис[d][3], positive regulation of mismatch repair[d][33], negative regulation of CD4-positive, alpha-beta T cell differentiation[d][23], positive regulation of cytosolic calcium ion concentration[d][5], T-helper 1 cell differentiation[d][28], dendritic cell chemotaxis[d][3], аутофагия[d][3], neutrophil clearance[d][6], V(D)J-рекомбинация[d][34], positive regulation of apoptotic process[d][26], DNA topological change[d][3], positive chemotaxis[d][3], toll-like receptor signaling pathway[d][3], neutrophil degranulation[d][3], күз үсеше[d][11], myeloid dendritic cell activation[d][11][11], positive regulation of protein phosphorylation[d][11], endothelial cell proliferation[d][11], plasmacytoid dendritic cell activation[d][11], macrophage activation involved in immune response[d][11], regulation of tolerance induction[d][11][35], regulation of T cell mediated immune response to tumor cell[d][11][11], base-excision repair[d][11], regulation of autophagy[d][36][11], развитие лёгких[d][11], activation of protein kinase activity[d][11], positive regulation of interferon-alpha production[d][11], positive regulation of interferon-beta production[d][11], positive regulation of interleukin-6 production[d][11], positive regulation of tumor necrosis factor production[d][11], positive regulation of toll-like receptor 2 signaling pathway[d][11], positive regulation of toll-like receptor 4 signaling pathway[d][11], endothelial cell chemotaxis[d][11], positive regulation of innate immune response[d][11], positive regulation of myeloid cell differentiation[d][11], positive regulation of glycogen catabolic process[d][11], regulation of protein kinase activity[d][11], положительная регуляция транскрипции РНК полимеразой II промотор[d][11][2], response to glucocorticoid[d][11], positive regulation of ERK1 and ERK2 cascade[d][11][37], positive regulation of wound healing[d][11], positive regulation of NIK/NF-kappaB signaling[d][11], positive regulation of sprouting angiogenesis[d][11], negative regulation of apoptotic cell clearance[d][11], regulation of nucleotide-excision repair[d][11], regulation of signaling receptor activity[d][11], negative regulation of transcription by RNA polymerase II[d][19][19], myeloid dendritic cell activation[d][3], activation of innate immune response[d][38][18], regulation of tolerance induction[d][39], regulation of T cell mediated immune response to tumor cell[d][3], DNA recombination[d][3][3][18], ремоделирование хроматина[d][18], regulation of transcription by RNA polymerase II[d][9][18], regulation of signaling receptor activity[d][18], regulation of autophagy[d][40], positive regulation of autophagy[d][18], процесс развития[d][18], positive regulation of interleukin-6 production[d][18], positive regulation of tumor necrosis factor production[d][18], positive regulation of blood vessel endothelial cell migration[d][41], positive regulation of innate immune response[d][18], положительная регуляция транскрипции РНК полимеразой II промотор[d][14][18], cell chemotaxis[d][18], positive regulation of ERK1 and ERK2 cascade[d][5][18], cellular response to lipopolysaccharide[d][3], positive regulation of NIK/NF-kappaB signaling[d][18], positive regulation of vascular endothelial cell proliferation[d][41], negative regulation of apoptotic cell clearance[d][17] һәм negative regulation of interferon-gamma production[d][23]

HMGB1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[42][43]

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 UniProt
  2. 2,0 2,1 2,2 2,3 Stros M., Polanská E., Struncová S. et al. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha // Nucleic Acids Res.OUP, University of Oxford, 2009. — ISSN 0305-1048; 1362-4962; 1362-4954doi:10.1093/NAR/GKP067PMID:19223331
  3. 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 3,11 3,12 3,13 3,14 3,15 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,27 3,28 3,29 3,30 3,31 3,32 3,33 3,34 3,35 3,36 3,37 3,38 3,39 3,40 3,41 3,42 3,43 3,44 3,45 3,46 3,47 3,48 3,49 3,50 3,51 3,52 GOA
  4. 4,0 4,1 4,2 4,3 Wilson S. H. HMGB1 is a cofactor in mammalian base excision repair // Mol. CellCell Press, Elsevier BV, 2007. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2007.06.029PMID:17803946
  5. 5,0 5,1 5,2 5,3 Venereau E., Apuzzo T., Marchis F. D. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4 // J. Exp. Med.Rockefeller University Press, 2012. — ISSN 0022-1007; 1540-9538doi:10.1084/JEM.20111739PMID:22370717
  6. 6,0 6,1 6,2 Liu G., Lorne E. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine // J. Immunol.Baltimore: 2008. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.181.6.4240PMID:18768881
  7. Youn J. H., Kwak M. S., Wu J. et al. Identification of lipopolysaccharide-binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model // Eur. J. Immunol.Wiley-Blackwell, 2011. — ISSN 0014-2980; 1521-4141doi:10.1002/EJI.201141391PMID:21660935
  8. Ku W., Chiu S., Chen Y. et al. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2 // Mol. Cell. ProteomicsAmerican Society for Biochemistry and Molecular Biology, 2009. — ISSN 1535-9476; 1535-9484doi:10.1074/MCP.M900013-MCP200PMID:19505873
  9. 9,0 9,1 9,2 Stros M., Ozaki T., Bacikova A. et al. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2002. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M110233200PMID:11748232
  10. L Jayaraman, Moorthy N. C., Murthy K. G. et al. High mobility group protein-1 (HMG-1) is a unique activator of p53 // Genes Dev.Cold Spring Harbor Laboratory Press, 1998. — ISSN 0890-9369; 1549-5477doi:10.1101/GAD.12.4.462PMID:9472015
  11. 11,00 11,01 11,02 11,03 11,04 11,05 11,06 11,07 11,08 11,09 11,10 11,11 11,12 11,13 11,14 11,15 11,16 11,17 11,18 11,19 11,20 11,21 11,22 11,23 11,24 11,25 11,26 11,27 11,28 11,29 11,30 11,31 11,32 11,33 11,34 11,35 11,36 11,37 11,38 11,39 11,40 11,41 11,42 11,43 11,44 11,45 11,46 11,47 11,48 11,49 11,50 11,51 11,52 11,53 GOA
  12. Preiss T., Beckmann B. M., Humphreys D. T. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins // CellCell Press, Elsevier BV, 2012. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2012.04.031PMID:22658674
  13. Bonneau R. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts // Mol. CellCell Press, Elsevier BV, 2012. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2012.05.021PMID:22681889
  14. 14,0 14,1 14,2 14,3 14,4 Stros M., Polanská E., Struncová S. et al. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha // Nucleic Acids Res.OUP, University of Oxford, 2009. — ISSN 0305-1048; 1362-4962; 1362-4954doi:10.1093/NAR/GKP067PMID:19223331
  15. Bonneau R. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts // Mol. CellCell Press, Elsevier BV, 2012. — ISSN 1097-2765; 1097-4164doi:10.1016/J.MOLCEL.2012.05.021PMID:22681889
  16. Preiss T., Beckmann B. M., Humphreys D. T. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins // CellCell Press, Elsevier BV, 2012. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2012.04.031PMID:22658674
  17. 17,0 17,1 17,2 Friggeri A. HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin // American Journal of Physiology: Cell Physiology — 2010. — ISSN 0363-6143; 1522-1563doi:10.1152/AJPCELL.00152.2010PMID:20826760
  18. 18,00 18,01 18,02 18,03 18,04 18,05 18,06 18,07 18,08 18,09 18,10 18,11 18,12 18,13 18,14 18,15 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  19. 19,0 19,1 19,2 Gazzar M. E., Yoza B. K., Chen X. et al. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance // Mol. Cell. Biol.ASM, 2009. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.01862-08PMID:19158276
  20. 20,0 20,1 20,2 Kalyan S., Chow A. W. Linking innate and adaptive immunity: human Vgamma9Vdelta2 T cells enhance CD40 expression and HMGB-1 secretion // Mediators of InflammationHindawi Publishing Corporation, 2009. — ISSN 0962-9351; 1466-1861doi:10.1155/2009/819408PMID:19841752
  21. Agresti A., Bianchi M. E., Nordmann P. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes // Mol. Biol. Cell,American Society for Cell Biology, 2003. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.E02-09-0581PMID:12925773
  22. Kalyan S., Chow A. W. Linking innate and adaptive immunity: human Vgamma9Vdelta2 T cells enhance CD40 expression and HMGB-1 secretion // Mediators of InflammationHindawi Publishing Corporation, 2009. — ISSN 0962-9351; 1466-1861doi:10.1155/2009/819408PMID:19841752
  23. 23,0 23,1 23,2 23,3 Wild C. A., Bergmann C., Fritz G. et al. HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells // Int. Immunol.OUP, 2012. — ISSN 0953-8178; 1460-2377doi:10.1093/INTIMM/DXS051PMID:22473704
  24. Stros M., Ozaki T., Bacikova A. et al. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2002. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M110233200PMID:11748232
  25. 25,0 25,1 Andersson U., Moldawer L. L. Structural basis for the proinflammatory cytokine activity of high mobility group box 1 // Mol. Med.The Feinstein Institute for Medical Research, BMC, Springer Science+Business Media, 2003. — ISSN 1076-1551; 1528-3658PMID:12765338
  26. 26,0 26,1 Zhu X., Yao Y., Liang H. et al. Effect of high mobility group box-1 protein on apoptosis of peritoneal macrophages // Arch. Biochem. Biophys.Academic Press, Elsevier BV, 2009. — ISSN 0003-9861; 1096-0384doi:10.1016/J.ABB.2009.09.016PMID:19800306
  27. Ge H, RG R. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1994. — ISSN 0021-9258; 1083-351X; 1067-8816PMID:8006019
  28. 28,0 28,1 28,2 28,3 Rovere-Querini P., Nawroth P. P. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products // J. Immunol.Baltimore: 2005. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.174.12.7506PMID:15944249
  29. Billiar T. R. High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4- and interferon response factor 3-dependent mechanism(s) // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2013. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M112.434142PMID:23148224
  30. Wang H. HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2014. — ISSN 0006-291X; 1090-2104doi:10.1016/J.BBRC.2014.06.074PMID:24971542
  31. Lee W., Ku S., Kim T. H. et al. Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo // Food Chem. Toxicol. / J. L. DomingoElsevier BV, 2013. — ISSN 0278-6915; 1873-6351doi:10.1016/J.FCT.2012.10.061PMID:23146691
  32. Gazzar M. E., Yoza B. K., Chen X. et al. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance // Mol. Cell. Biol.ASM, 2009. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.01862-08PMID:19158276
  33. Li G. Evidence for involvement of HMGB1 protein in human DNA mismatch repair // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2004. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M401931200PMID:15014079
  34. Nussenzweig M. C. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins // J. Exp. Med.Rockefeller University Press, 1997. — ISSN 0022-1007; 1540-9538doi:10.1084/JEM.185.11.2025PMID:9166431
  35. Green D. R. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein // ImmunityCell Press, Elsevier BV, 2008. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2008.05.013PMID:18631454
  36. Bianchi M. E., Tracey K. J., Zeh H. J. et al. Endogenous HMGB1 regulates autophagy // J. Cell Biol. / J. NunnariRockefeller University Press, 2010. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200911078PMID:20819940
  37. Venereau E., Apuzzo T., Marchis F. D. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4 // J. Exp. Med.Rockefeller University Press, 2012. — ISSN 0022-1007; 1540-9538doi:10.1084/JEM.20111739PMID:22370717
  38. Wang H. HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2014. — ISSN 0006-291X; 1090-2104doi:10.1016/J.BBRC.2014.06.074PMID:24971542
  39. Green D. R. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein // ImmunityCell Press, Elsevier BV, 2008. — ISSN 1074-7613; 1097-4180doi:10.1016/J.IMMUNI.2008.05.013PMID:18631454
  40. Bianchi M. E., Tracey K. J., Zeh H. J. et al. Endogenous HMGB1 regulates autophagy // J. Cell Biol. / J. NunnariRockefeller University Press, 2010. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.200911078PMID:20819940
  41. 41,0 41,1 Kessler B., Harris A. L. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration // Sci. Rep.Macmillan Publishers, NPG, 2017. — ISSN 2045-2322doi:10.1038/SREP44137PMID:28276476
  42. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  43. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар[үзгәртү | вики-текстны үзгәртү]

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)