Алма әчелеге
Алма әчелеге (НООС-СН2-СН(ОН)-СООН) - ике нигезле оксикарбон әчелеге; тозлары малатлар дип атала. Җитешмәгән алма, йөзем, миләш, барбарис, кура җиләге, әфлисун, мандарин, лимон һ.б.н. эчендә бар. Азык-төлек сәнәгатендә (азык өстәмәсе буларак), медицинада кулланыла.
Искәрмәләр[үзгәртү | вики-текстны үзгәртү]
- ↑ 1,0 1,1 1,2 malic acid
- ↑ Kurkin V. A., Zapesochnaya G. G., Klyaznika V. G. Flavonoids of the rhizomes ofRhodiola rosea. I. Tricin glucosides // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00575035
- ↑ Lexa A, Fleurentin J, PR L. et al. Choleretic and hepatoprotective properties of Eupatorium cannabinum in the rat. // Planta Med. — Thieme Medical Publishers (Germany), 1989. — ISSN 0032-0943; 1439-0221 — doi:10.1055/S-2006-961904 — PMID:2748727
- ↑ KOZUKUE E., KOZUKUE N., KUROSAKI T. Organic Acid, Sugar and Amino Acid Composition of Bamboo Shoots // Journal of Food Science — Institute of Food Technologists, 2006. — ISSN 0022-1147; 1750-3841 — doi:10.1111/J.1365-2621.1983.TB14934.X
- ↑ 5,0 5,1 5,2 Polyakov V. V., Orlov V. K., R. Zh. Shukenova et al. Carboxylic acids ofPopulus balsamifera // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00576226
- ↑ 6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 J. Soušek, D. Guédon, T. Adam et al. Alkaloids and organic acids content of eightFumaria species // Phytochem. Anal. — Wiley, 2002. — ISSN 0958-0344; 1099-1565 — <6::AID-PCA431>3.0.CO;2-0 doi:10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- ↑ C. Barbas, J. A. Lucas García, F. J. Gutiérrez Mañero Separation and identification of organic acids in root exudates ofLupinus luteus by capillary zone electrophoresis // Phytochem. Anal. — Wiley, 2005. — ISSN 0958-0344; 1099-1565 — <55::AID-PCA437>3.0.CO;2-I doi:10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
- ↑ Agrawal B., Lakshmanan V., Kaushik S. et al. Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance // Planta — Springer Science+Business Media, 2012. — ISSN 0032-0935; 1432-2048; 1866-2749 — doi:10.1007/S00425-012-1621-2 — PMID:22411507
- ↑ Jonsson P., Kusano M., Saito K. et al. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana // BMC Syst. Biol. — BMC, Springer Science+Business Media, 2007. — ISSN 1752-0509 — doi:10.1186/1752-0509-1-53 — PMID:18028551
- ↑ Saito K., Fukushima A., Kusano M. et al. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach // BMC Syst. Biol. — BMC, Springer Science+Business Media, 2011. — ISSN 1752-0509 — doi:10.1186/1752-0509-5-1 — PMID:21194489
- ↑ 11,0 11,1 11,2 11,3 Boyes S., Strübi P., Marsh H. Sugar and Organic Acid Analysis of Actinidia arguta and Rootstock–Scion Combinations of Actinidia arguta // Lebensm. Wiss. Technol. — Elsevier BV, 2002. — ISSN 0023-6438; 1096-1127 — doi:10.1006/FSTL.1996.0201
- ↑ Aloe Vera — 2019. — doi:10.21019/PFDI.ALOEVERA
- ↑ Aloe vera — 2020. — doi:10.32388/D6856Y
- ↑ F.A. Ayaz, M. Kucukislamoglu, M. Reunanen Sugar, Non-volatile and Phenolic Acids Composition of Strawberry Tree (Arbutus unedo L. var.ellipsoidea ) Fruits // J. Food Comp. Anal. — Elsevier BV, 2002. — ISSN 0889-1575; 1096-0481 — doi:10.1006/JFCA.1999.0868
- ↑ SUGAR BEET (Beta vulgaris) — 2008. — doi:10.1007/978-1-4020-4585-1_2617
- ↑ M.-Y Ding, P.-R Chen, G.-A Luo Simultaneous determination of organic acids and inorganic anions in tea by ion chromatography // J. Chromatogr. A — Elsevier BV, 2002. — ISSN 1873-3778; 0021-9673 — doi:10.1016/S0021-9673(96)00910-7
- ↑ Marigo G., Bouyssou H., Belkoura M. Vacuolar efflux of malate and its influence of nitrate accumulation in Catharanthus roseus cells // Plant Science — Elsevier BV, 2003. — ISSN 0168-9452; 1873-2259 — doi:10.1016/0168-9452(85)90099-8
- ↑ Timpa J. D., Burke J. J. Monitoring organic acids and carbohydrates in cotton leaves by high-performance liquid chromatography // J. Agric. Food Chem. — USA: ACS, 2005. — 4 p. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF00071A036
- ↑ S G von Eggelkraut-Gottanka, Abed S. A., W Müller et al. Quantitative analysis of the active components and the by-products of eight dry extracts of Hypericum perforatum L. (St John's Wort). // Phytochem. Anal. — Wiley, 2002. — ISSN 0958-0344; 1099-1565 — doi:10.1002/PCA.638 — PMID:12099108
- ↑ Picha D. H. Organic acid determination in sweet potatoes by HPLC // J. Agric. Food Chem. — USA: ACS, 2005. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF00064A045
- ↑ T Pohl, C Koorbanally, Crouch N. R. et al. Secondary metabolites of Scilla plumbea, Ledebouria cooperi and Ledebouria ovatifolia (Hyacinthaceae). // Biochem. Syst. Ecol. — Elsevier BV, 2001. — ISSN 0305-1978; 1873-2925 — doi:10.1016/S0305-1978(01)00027-8 — PMID:11412959
- ↑ UEDA M., SASAKI K., UTSUNOMIYA N. һ.б. Changes in Physical and Chemical Properties during Maturation of Mango Fruit(Mangifera indica L. 'Irwin') Cultured in a Plastic Greenhouse. // Food Science and Technology Research — Karger Publishers, 2007. — ISSN 1344-6606; 1341-7592; 1881-3976; 1881-3984 — doi:10.3136/FSTR.6.299
- ↑ Lalaguna F. Purification of fresh cassava root polyphenols by solid-phase extraction with Amberlite XAD-8 resin // J. Chromatogr. A — Elsevier BV, 2002. — ISSN 1873-3778; 0021-9673 — doi:10.1016/0021-9673(93)80301-N
- ↑ F. Koyuncu Organic Acid Composition of Native Black Mulberry Fruit // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1023/B:CONC.0000048249.44206.E2
- ↑ F. F. Feitosa Teles, J. Warren Stull, Brown W. H. et al. Amino and organic acids of the prickly pear cactus (Opuntia ficus indica L.) // J. Sci. Food Agric. — Wiley, 2006. — ISSN 0022-5142; 1097-0010 — doi:10.1002/JSFA.2740350410
- ↑ Djerassi C. The Non-volatile Acids of Succulent Plants Exhibiting a Marked Diurnal Oscillation in their Acid Content. II. Demonstration of Piscidic Acid as one of the Predominating Acids in Opuntia ficus-indica L.. // Acta Chemica Scandinavica — RSC, 2008. — ISSN 0904-213X; 0001-5393 — doi:10.3891/ACTA.CHEM.SCAND.20-1431
- ↑ KAZUNO C., MIURA H. Studies on constituent of edible fungi. Part II. Chemical constituents of Pleurotus ostreatus. // 日本食品工業学会誌 — 2011. — ISSN 0029-0394 — doi:10.3136/NSKKK1962.32.338
- ↑ W. Greenaway, T. Scaysbrook, F.R. Whatley Phenolic analysis of bud exudate of Populus lasiocarpa by GC/MS // Phytochemistry — Elsevier BV, 2002. — ISSN 0031-9422; 1873-3700 — doi:10.1016/0031-9422(88)80758-1
- ↑ Parry O, JA M., FK O. The skeletal muscle relaxant action of Portulaca oleracea: role of potassium ions. // J. Ethnopharmacol. — Elsevier BV, 1993. — ISSN 0378-8741; 1872-7573 — doi:10.1016/0378-8741(93)90067-F — PMID:8145574
- ↑ Y Chuda, H Ono, M Ohnishi-Kameyama et al. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc) // J. Agric. Food Chem. — USA: ACS, 1999. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF980960T — PMID:10552374
- ↑ Plekhanova T. I., Bandyukova V. A., F. Kh. Bairamkulova Chemical components of the fruit ofRosa spinosissima // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00713334
- ↑ MATSUI T., KITAGAWA H. Seasonal changes of cis-aconitic and malic acid contents in sugarcane. // 日本食品工業学会誌 — 2011. — ISSN 0029-0394 — doi:10.3136/NSKKK1962.33.10_740
- ↑ 33,0 33,1 J. Karovičová, J. Polonský, A. Príbela Composition of organic acids of Sambucus nigra and Sambucus ebulus // Mol. Nutr. Food Res. — Wiley-Blackwell, 2006. — ISSN 1613-4125; 1613-4133 — doi:10.1002/FOOD.19900340716
- ↑ BUSHWAY R. J., BUREAU J. L., MCGANN D. F. Determinations of Organic Acids in Potatoes by High Performance Liquid Chromatography // Journal of Food Science — Institute of Food Technologists, 2006. — ISSN 0022-1147; 1750-3841 — doi:10.1111/J.1365-2621.1984.TB13673.X
- ↑ 35,0 35,1 Saleem R., Ahmad M., Naz A. et al. Hypotensive and toxicological study of citric acid and other constituents from Tagetes patula roots. // Archives of Pharmacal Research — Springer Science+Business Media, Springer Nature, 2004. — ISSN 0253-6269; 1976-3786 — doi:10.1007/BF02975428 — PMID:15554261
- ↑ Rustanbekov R. B., Gadzhieva T. G., S. Sh. Mamedov Components of Telekia speciosa // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00633415
- ↑ F. Yu. Kasumov, Gadzhieva T. G. Components ofThymus transcaucasicus // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00575075
- ↑ 38,0 38,1 38,2 Krogfelt K. A., Cornett C., Christensen S. B. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). // J. Agric. Food Chem. — USA: ACS, 2002. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF0205110 — PMID:12405790
- ↑ Jones O. Mixtures of similarly acting compounds in Daphnia magna: from gene to metabolite and beyond // Environ. Int. — Elsevier BV, 2010. — ISSN 0160-4120; 1873-6750 — doi:10.1016/J.ENVINT.2009.12.006 — PMID:20117838
- ↑ Yang X., Yin H., Borland A. M. et al. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave // Nature Plants — NPG, 2016. — ISSN 2055-0278; 2055-026X — doi:10.1038/NPLANTS.2016.178 — PMID:27869799
- ↑ Zellner J. Über die chemische Zusammensetzung der Agave americana L. nebst Bemerkungen über die Chemie der Succulenten im allgemeinen. // Hoppe-Seyler's Zeitschrift für physiologische Chemie — B: Verlag Walter de Gruyter, 2011. — ISSN 0018-4888 — doi:10.1515/BCHM2.1919.104.1.2
- ↑ Hicks L. M., Gargouri M. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. // The Plant Journal — Wiley-Blackwell, 2015. — ISSN 0960-7412; 1365-313X — doi:10.1111/TPJ.12747 — PMID:25515814
- ↑ 43,0 43,1 Choi H. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture. // PLOS ONE / PLOS ONE Editors — PLoS, 2017. — ISSN 1932-6203 — doi:10.1371/JOURNAL.PONE.0187622 — PMID:29099862
- ↑ 44,0 44,1 Browning G. F., Masukagami Y., Souza D. D. et al. Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations. // mSystems — ASM, 2017. — ISSN 2379-5077 — doi:10.1128/MSYSTEMS.00055-17 — PMID:29034329
- ↑ Gupta R. An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits // Front. Plant Sci. — Frontiers Media, 2016. — ISSN 1664-462X — doi:10.3389/FPLS.2016.00994 — PMID:27458475
- ↑ 46,0 46,1 Liu F., Meng Y., He K. et al. Comparative analysis of proteomic and metabolomic profiles of different species of Paris // Journal of Proteomics — Elsevier BV, 2019. — ISSN 1874-3919; 0165-022X — doi:10.1016/J.JPROT.2019.02.003 — PMID:30890455
- ↑ Sokołowska K., Niittylä T., Hvidsten T. R. et al. A metabolite roadmap of the wood-forming tissue in Populus tremula // New Phytologist — London: Wiley-Blackwell, 2020. — ISSN 0028-646X; 1469-8137 — doi:10.1111/NPH.16799 — PMID:32648607
- ↑ Le S. Transcriptomic and Metabolomics Profiling of Phage-Host Interactions between Phage PaP1 and Pseudomonas aeruginosa // Frontiers in microbiology — Frontiers Media, 2017. — ISSN 1664-302X — doi:10.3389/FMICB.2017.00548 — PMID:28421049
- ↑ Tian S., Wang C., Li Y. et al. The impact of slyA on cell metabolism of Salmonella Typhimurium: a joint study of transcriptomics and metabolomics // J. Proteome Res. / J. Yates — ACS, 2020. — ISSN 1535-3893; 1535-3907 — doi:10.1021/ACS.JPROTEOME.0C00281 — PMID:32969666
- ↑ Steinbeck C., Beisken S., Salek R. M. et al. Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants // Scientific Data / Veronique van den Berghe, S. Sansone, V. Hurst — Macmillan Publishers, NPG, 2014. — ISSN 2052-4463 — doi:10.1038/SDATA.2014.29 — PMID:25977786
- ↑ Garcia P. G., Zanotta S., Eberlin M. N. et al. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants // Molecules — MDPI, 2018. — ISSN 1420-3049; 1431-5157 — doi:10.3390/MOLECULES23123330 — PMID:30558273
- ↑ Fiore C. L., Longnecker K., Melissa C Kido Soule һ.б. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631. // Environmental Microbiology — Wiley-Blackwell, 2015. — ISSN 1462-2912; 1462-2920 — doi:10.1111/1462-2920.12899 — PMID:25970745
- ↑ Kopka J., Schwarz D., Huege J. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. // Plant Physiol. — American Society of Plant Biologists, 2008. — 12 p. — ISSN 0032-0889; 1532-2548 — doi:10.1104/PP.108.129403 — PMID:18945936
- ↑ Wilinski D., Freddolino P. L. Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster // Nat. Commun. / J. D. Heber — NPG, 2019. — ISSN 2041-1723 — doi:10.1038/S41467-019-11933-Z — PMID:31492856
- ↑ Anjaritha A R Parijadi, Ridwani S., Dwivany F. M. et al. A metabolomics-based approach for the evaluation of off-tree ripening conditions and different postharvest treatments in mangosteen (Garcinia mangostana) // Metabolomics — Springer Science+Business Media, 2019. — ISSN 1573-3882; 1573-3890 — doi:10.1007/S11306-019-1526-1 — PMID:31054000
- ↑ Sun S., Guo Z., Fu H. et al. Based on the Metabolomic Approach the Energy Metabolism Responses of Oriental River Prawn Macrobrachium nipponense Hepatopancreas to Acute Hypoxia and Reoxygenation. // Frontiers in Physiology — Frontiers Media, 2018. — ISSN 1664-042X — doi:10.3389/FPHYS.2018.00076 — PMID:29686619
- ↑ 57,0 57,1 Fang J., Wong C. 6,8-Di-C-glycosyl flavonoids from Dendrobium huoshanense. // J. Nat. Prod. — ACS, 2010. — ISSN 0163-3864; 1520-6025 — doi:10.1021/NP900252F — PMID:20055483
- ↑ Aristilde L., Martínez C. E. Ecophysiological Study of Paraburkholderia sp. 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency // Appl. Environ. Microbiol. — ASM, 2020. — ISSN 0099-2240; 1098-5336; 1070-6291 — doi:10.1128/AEM.01851-20 — PMID:33008817
- ↑ Goufo P., Cortez I. Dataset of levels and masses of lipid species in healthy, asymptomatic and symptomatic leaves of vitis vinifera L. 'Malvasia fina' affected by ESCA complex disease // DIB — Elsevier BV, 2020. — ISSN 2352-3409 — doi:10.1016/J.DIB.2020.106469 — PMID:33204780
- ↑ 60,0 60,1 Kuliev V. B., Gusarova N. V. Components of the fruit ofRosa nisami // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00574362
- ↑ CE T., MA E., EG B. Constituents of Cannabis sativa L. XVII. A review of the natural constituents // J. Nat. Prod. — ACS, 1980. — ISSN 0163-3864; 1520-6025 — doi:10.1021/NP50008A001 — PMID:6991645
- ↑ Udvardi M. K., Kopka J., Erban A. Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus // Plant, Cell and Environment / A. Amtmann — Wiley-Blackwell, 2009. — ISSN 0140-7791; 1365-3040 — doi:10.1111/J.1365-3040.2009.02047.X — PMID:19781009
- ↑ Redestig H., Hannah M. A., Kopka J. et al. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus // The Plant Journal — Wiley-Blackwell, 2007. — ISSN 0960-7412; 1365-313X — doi:10.1111/J.1365-313X.2007.03381.X — PMID:18047558
- ↑ Chen Y., Kasvandik S., Nielsen J. Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation // Nat. Commun. / J. D. Heber — NPG, 2022. — ISSN 2041-1723 — doi:10.1038/S41467-022-30513-2 — PMID:35595797
- ↑ 65,0 65,1 D. Olennikov, Tankhaeva L. M., Nikolaeva G. G. et al. Biologically Active Compounds from Cacalia hastata Leaves. 2. Carotinoids and Chlorophylls // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1023/B:CONC.0000025481.49542.8D
- ↑ Tan A., Cunningham B., Eijkelkamp B. et al. Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model // Cell Reports — Cell Press, Elsevier BV, 2022. — ISSN 2211-1247; 2639-1856 — doi:10.1016/J.CELREP.2021.110202
- ↑ Pucher G. W., Wakeman A. J., Vickery H. B. THE ORGANIC ACIDS OF RHUBARB (RHEUM HYBRIDUM) // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2021. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1016/S0021-9258(18)73892-1
- ↑ Pucher G. W., Clark H. E., Vickery H. B. THE ORGANIC ACIDS OF RHUBARB (RHEUM HYBRIDUM) // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2021. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1016/S0021-9258(18)74561-4
- ↑ Usenik V., Fabčič J., Štampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.) // Food Chem. — Elsevier BV, 2008. — ISSN 0308-8146; 1873-7072 — doi:10.1016/J.FOODCHEM.2007.08.004
- ↑ Redzynia M., Sosnowska D., Podsędek A. et al. Comparison of in vitro anti-lipase and antioxidant activities, and composition of commercial chokeberry juices // International Journal of Food Research and Technology — Springer Science+Business Media, 2015. — ISSN 1438-2377; 1431-4630; 1431-4649; 1438-2385 — doi:10.1007/S00217-015-2561-4
- ↑ Sójka M., Kołodziejczyk K., Milala J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products // Industrial Crops and Products — Elsevier BV, 2013. — ISSN 0926-6690; 1872-633X — doi:10.1016/J.INDCROP.2013.08.051
- ↑ J. Šnebergrová, H. Čížková, E. Neradová et al. Variability of characteristic components of aronia // Czech Journal of Food Science — Czech Academy of Agricultural Sciences, 2018. — ISSN 1212-1800; 0862-8653; 1805-9317 — doi:10.17221/540/2012-CJFS
- ↑ Allan D. L., Cook B. D., Rosen C. J. Nitrogen Form and Solution pH Effect on Organic Acid Content of Cranberry Roots and Shoots // Hortscience — 2019. — ISSN 0018-5345; 2327-9834 — doi:10.21273/HORTSCI.29.4.313
- ↑ Coppola E. D., Conrad E. C., Cotter R. High Pressure Liquid Chromatographic Determination of Major Organic Acids in Cranberry Juice // Journal of the Association of Official Analytical Chemists — 2020. — ISSN 0004-5756 — doi:10.1093/JAOAC/61.6.1490
- ↑ Seeram N. P. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. // J. Agric. Food Chem. — USA: ACS, 2004. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF0352778 — PMID:15113149
- ↑ 76,0 76,1 A. Sattikulov, Sh. V. Abdullaev, É. Kh. Batirov et al. Organic acids ofAmmothamnus lehmannii // Chemistry of Natural Compounds — Springer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388 — doi:10.1007/BF00575055
- ↑ Carbone V., Piacente S., Pizza C. et al. Investigation of the tuber constituents of maca (Lepidium meyenii Walp.). // J. Agric. Food Chem. — USA: ACS, 2002. — 5 p. — ISSN 0021-8561; 1520-5118 — doi:10.1021/JF020280X — PMID:12236688
- ↑ IUPHAR/BPS Guide to PHARMACOLOGY