Алма әчелеге

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/Алма әчелеге latin yazuında])
Алма әчелеге
Химическая структура
Масса 134,022 м.а.б.[1]
Химик фурмула C₄H₆O₅[1]
SMILES фурмуласы C(C(C(=O)O)O)C(=O)O[1]
Нинди таксонда бар Родиола розовая[d][2], посконник коноплевидный[d][3], Phyllostachys edulis[d][4], Тополь бальзамический[d][5], Fumaria agraria[d][6], Дымянка козья[d][6], Fumaria densiflora[d][6], Fumaria muralis[d][6], F. officinalis[d][6], Fumaria parviflora[d][6], Fumaria vaillantii[d][6], Люпин жёлтый[d][7], Резуховидка Таля[d][8][9][10][…], Актинидия острая[d][11], Actinidia chinensis[d][11], Actinidia hemsleyana[d][11], Актинидия полигамная[d][11], алоэ вера[d][12][13], Земляничное дерево крупноплодное[d][14], свёкла обыкновенная[d][15], чай[d][16], Катарантус розовый[d][17], Хлопчатник обыкновенный[d][18], Зверобой продырявленный[d][19], батат[d][20], Ledebouria cooperi[d][21], мангифера индийская[d][22], Маниок[d][23], шелковица чёрная[d][24], Опунция индийская[d][25][26], Вёшенка обыкновенная[d][27], Populus lasiocarpa[d][28], Портулак огородный[d][29], Слива японская[d][30], Шиповник колючейший[d][31], сахарный тростник культивируемый[d][32], бузина травянистая[d][33], бузина чёрная[d][33], бәрәңге[34], Бархатцы прямостоячие[d][35], Бархатцы мелкоцветные[d][35], Telekia speciosa[d][36], Thymus transcaucasicus[d][37], Караҗиләк үсемлеге[d][38], Vaccinium oxycoccos[d][38], Нарат җиләге[38], D. magna[d][39], Агава американская[d][40][41], Chlamydomonas reinhardtii[d][42], Ряска тропическая[d][43], Mycoplasma bovis[d][44], Mycoplasma gallisepticum[d][44], Женьшень[d][45], Paris fargesii[d][46], Paris polyphylla[d][46], Осина[d][47], Синегнойная палочка[d][48], Salmonella enterica[d][49], томат[d][50][51], Synechococcus elongatus[d][52], Synechocystis[d][53], Drosophila melanogaster[d][54], Мангостан[d][55], Macrobrachium nipponense[d][56], Dendrobium huoshanense[d][57], Paraburkholderia[d][58], виноград культурный[d][59], Rosa nisami[d][60], конопля посевная[d][61], Populus candicans[d][5], Lotus japonicus[d][62][63], Ряска крошечная[d][43], Saccharomyces cerevisiae[d][64], Какалия копьевидная[d][65], Cacalia hastata[d][65], Пневмококк[d][66], Rheum hybridum[d][67][68], төче чия[69], Кара миләш[70][71][72][…], Vaccinium macrocarpon[d][73][74][75], Dendrobium officinale[d][57], P. spicata[d][6], Platycapnos spicatus[d][6], Sophora lehmannii[d][76], Sophora lehmanni[d][76], Rosa pulverulenta[d][60], тополь белый[d][5] һәм Мака перуанская[d][77]
Тәэсир итешә Polycystin 2 like 1, transient receptor potential cation channel[d][78]
Commons-logo.svg Алма әчелеге Викиҗыентыкта

Алма әчелеге (НООС-СН2-СН(ОН)-СООН) - ике нигезле оксикарбон әчелеге; тозлары малатлар дип атала. Җитешмәгән алма, йөзем, миләш, барбарис, кура җиләге, әфлисун, мандарин, лимон һ.б.н. эчендә бар. Азык-төлек сәнәгатендә (азык өстәмәсе буларак), медицинада кулланыла.

Искәрмәләр[үзгәртү | вики-текстны үзгәртү]

  1. 1,0 1,1 1,2 malic acid
  2. Kurkin V. A., Zapesochnaya G. G., Klyaznika V. G. Flavonoids of the rhizomes ofRhodiola rosea. I. Tricin glucosides // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00575035
  3. Lexa A, Fleurentin J, PR L. et al. Choleretic and hepatoprotective properties of Eupatorium cannabinum in the rat. // Planta Med.Thieme Medical Publishers (Germany), 1989. — ISSN 0032-0943; 1439-0221doi:10.1055/S-2006-961904PMID:2748727
  4. KOZUKUE E., KOZUKUE N., KUROSAKI T. Organic Acid, Sugar and Amino Acid Composition of Bamboo Shoots // Journal of Food ScienceInstitute of Food Technologists, 2006. — ISSN 0022-1147; 1750-3841doi:10.1111/J.1365-2621.1983.TB14934.X
  5. 5,0 5,1 5,2 Polyakov V. V., Orlov V. K., R. Zh. Shukenova et al. Carboxylic acids ofPopulus balsamifera // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00576226
  6. 6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 J. Soušek, D. Guédon, T. Adam et al. Alkaloids and organic acids content of eightFumaria species // Phytochem. Anal.Wiley, 2002. — ISSN 0958-0344; 1099-1565<6::AID-PCA431>3.0.CO;2-0 doi:10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
  7. C. Barbas, J. A. Lucas García, F. J. Gutiérrez Mañero Separation and identification of organic acids in root exudates ofLupinus luteus by capillary zone electrophoresis // Phytochem. Anal.Wiley, 2005. — ISSN 0958-0344; 1099-1565<55::AID-PCA437>3.0.CO;2-I doi:10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
  8. Agrawal B., Lakshmanan V., Kaushik S. et al. Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance // PlantaSpringer Science+Business Media, 2012. — ISSN 0032-0935; 1432-2048; 1866-2749doi:10.1007/S00425-012-1621-2PMID:22411507
  9. Jonsson P., Kusano M., Saito K. et al. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana // BMC Syst. Biol.BMC, Springer Science+Business Media, 2007. — ISSN 1752-0509doi:10.1186/1752-0509-1-53PMID:18028551
  10. Saito K., Fukushima A., Kusano M. et al. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach // BMC Syst. Biol.BMC, Springer Science+Business Media, 2011. — ISSN 1752-0509doi:10.1186/1752-0509-5-1PMID:21194489
  11. 11,0 11,1 11,2 11,3 Boyes S., Strübi P., Marsh H. Sugar and Organic Acid Analysis of Actinidia arguta and Rootstock–Scion Combinations of Actinidia arguta // Lebensm. Wiss. Technol.Elsevier BV, 2002. — ISSN 0023-6438; 1096-1127doi:10.1006/FSTL.1996.0201
  12. Aloe Vera — 2019. — doi:10.21019/PFDI.ALOEVERA
  13. Aloe vera — 2020. — doi:10.32388/D6856Y
  14. F.A. Ayaz, M. Kucukislamoglu, M. Reunanen Sugar, Non-volatile and Phenolic Acids Composition of Strawberry Tree (Arbutus unedo L. var.ellipsoidea ) Fruits // J. Food Comp. Anal.Elsevier BV, 2002. — ISSN 0889-1575; 1096-0481doi:10.1006/JFCA.1999.0868
  15. SUGAR BEET (Beta vulgaris) — 2008. — doi:10.1007/978-1-4020-4585-1_2617
  16. M.-Y Ding, P.-R Chen, G.-A Luo Simultaneous determination of organic acids and inorganic anions in tea by ion chromatography // J. Chromatogr. AElsevier BV, 2002. — ISSN 1873-3778; 0021-9673doi:10.1016/S0021-9673(96)00910-7
  17. Marigo G., Bouyssou H., Belkoura M. Vacuolar efflux of malate and its influence of nitrate accumulation in Catharanthus roseus cells // Plant ScienceElsevier BV, 2003. — ISSN 0168-9452; 1873-2259doi:10.1016/0168-9452(85)90099-8
  18. Timpa J. D., Burke J. J. Monitoring organic acids and carbohydrates in cotton leaves by high-performance liquid chromatography // J. Agric. Food Chem.USA: ACS, 2005. — 4 p. — ISSN 0021-8561; 1520-5118doi:10.1021/JF00071A036
  19. S G von Eggelkraut-Gottanka, Abed S. A., W Müller et al. Quantitative analysis of the active components and the by-products of eight dry extracts of Hypericum perforatum L. (St John's Wort). // Phytochem. Anal.Wiley, 2002. — ISSN 0958-0344; 1099-1565doi:10.1002/PCA.638PMID:12099108
  20. Picha D. H. Organic acid determination in sweet potatoes by HPLC // J. Agric. Food Chem.USA: ACS, 2005. — ISSN 0021-8561; 1520-5118doi:10.1021/JF00064A045
  21. T Pohl, C Koorbanally, Crouch N. R. et al. Secondary metabolites of Scilla plumbea, Ledebouria cooperi and Ledebouria ovatifolia (Hyacinthaceae). // Biochem. Syst. Ecol.Elsevier BV, 2001. — ISSN 0305-1978; 1873-2925doi:10.1016/S0305-1978(01)00027-8PMID:11412959
  22. UEDA M., SASAKI K., UTSUNOMIYA N. һ.б. Changes in Physical and Chemical Properties during Maturation of Mango Fruit(Mangifera indica L. 'Irwin') Cultured in a Plastic Greenhouse. // Food Science and Technology ResearchKarger Publishers, 2007. — ISSN 1344-6606; 1341-7592; 1881-3976; 1881-3984doi:10.3136/FSTR.6.299
  23. Lalaguna F. Purification of fresh cassava root polyphenols by solid-phase extraction with Amberlite XAD-8 resin // J. Chromatogr. AElsevier BV, 2002. — ISSN 1873-3778; 0021-9673doi:10.1016/0021-9673(93)80301-N
  24. F. Koyuncu Organic Acid Composition of Native Black Mulberry Fruit // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1023/B:CONC.0000048249.44206.E2
  25. F. F. Feitosa Teles, J. Warren Stull, Brown W. H. et al. Amino and organic acids of the prickly pear cactus (Opuntia ficus indica L.) // J. Sci. Food Agric.Wiley, 2006. — ISSN 0022-5142; 1097-0010doi:10.1002/JSFA.2740350410
  26. Djerassi C. The Non-volatile Acids of Succulent Plants Exhibiting a Marked Diurnal Oscillation in their Acid Content. II. Demonstration of Piscidic Acid as one of the Predominating Acids in Opuntia ficus-indica L.. // Acta Chemica ScandinavicaRSC, 2008. — ISSN 0904-213X; 0001-5393doi:10.3891/ACTA.CHEM.SCAND.20-1431
  27. KAZUNO C., MIURA H. Studies on constituent of edible fungi. Part II. Chemical constituents of Pleurotus ostreatus. // 日本食品工業学会誌 — 2011. — ISSN 0029-0394doi:10.3136/NSKKK1962.32.338
  28. W. Greenaway, T. Scaysbrook, F.R. Whatley Phenolic analysis of bud exudate of Populus lasiocarpa by GC/MS // PhytochemistryElsevier BV, 2002. — ISSN 0031-9422; 1873-3700doi:10.1016/0031-9422(88)80758-1
  29. Parry O, JA M., FK O. The skeletal muscle relaxant action of Portulaca oleracea: role of potassium ions. // J. Ethnopharmacol.Elsevier BV, 1993. — ISSN 0378-8741; 1872-7573doi:10.1016/0378-8741(93)90067-FPMID:8145574
  30. Y Chuda, H Ono, M Ohnishi-Kameyama et al. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc) // J. Agric. Food Chem.USA: ACS, 1999. — ISSN 0021-8561; 1520-5118doi:10.1021/JF980960TPMID:10552374
  31. Plekhanova T. I., Bandyukova V. A., F. Kh. Bairamkulova Chemical components of the fruit ofRosa spinosissima // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00713334
  32. MATSUI T., KITAGAWA H. Seasonal changes of cis-aconitic and malic acid contents in sugarcane. // 日本食品工業学会誌 — 2011. — ISSN 0029-0394doi:10.3136/NSKKK1962.33.10_740
  33. 33,0 33,1 J. Karovičová, J. Polonský, A. Príbela Composition of organic acids of Sambucus nigra and Sambucus ebulus // Mol. Nutr. Food Res.Wiley-Blackwell, 2006. — ISSN 1613-4125; 1613-4133doi:10.1002/FOOD.19900340716
  34. BUSHWAY R. J., BUREAU J. L., MCGANN D. F. Determinations of Organic Acids in Potatoes by High Performance Liquid Chromatography // Journal of Food ScienceInstitute of Food Technologists, 2006. — ISSN 0022-1147; 1750-3841doi:10.1111/J.1365-2621.1984.TB13673.X
  35. 35,0 35,1 Saleem R., Ahmad M., Naz A. et al. Hypotensive and toxicological study of citric acid and other constituents from Tagetes patula roots. // Archives of Pharmacal ResearchSpringer Science+Business Media, Springer Nature, 2004. — ISSN 0253-6269; 1976-3786doi:10.1007/BF02975428PMID:15554261
  36. Rustanbekov R. B., Gadzhieva T. G., S. Sh. Mamedov Components of Telekia speciosa // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00633415
  37. F. Yu. Kasumov, Gadzhieva T. G. Components ofThymus transcaucasicus // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00575075
  38. 38,0 38,1 38,2 Krogfelt K. A., Cornett C., Christensen S. B. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). // J. Agric. Food Chem.USA: ACS, 2002. — ISSN 0021-8561; 1520-5118doi:10.1021/JF0205110PMID:12405790
  39. Jones O. Mixtures of similarly acting compounds in Daphnia magna: from gene to metabolite and beyond // Environ. Int.Elsevier BV, 2010. — ISSN 0160-4120; 1873-6750doi:10.1016/J.ENVINT.2009.12.006PMID:20117838
  40. Yang X., Yin H., Borland A. M. et al. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave // Nature PlantsNPG, 2016. — ISSN 2055-0278; 2055-026Xdoi:10.1038/NPLANTS.2016.178PMID:27869799
  41. Zellner J. Über die chemische Zusammensetzung der Agave americana L. nebst Bemerkungen über die Chemie der Succulenten im allgemeinen. // Hoppe-Seyler's Zeitschrift für physiologische ChemieB: Verlag Walter de Gruyter, 2011. — ISSN 0018-4888doi:10.1515/BCHM2.1919.104.1.2
  42. Hicks L. M., Gargouri M. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. // The Plant JournalWiley-Blackwell, 2015. — ISSN 0960-7412; 1365-313Xdoi:10.1111/TPJ.12747PMID:25515814
  43. 43,0 43,1 Choi H. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture. // PLOS ONE / PLOS ONE EditorsPLoS, 2017. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0187622PMID:29099862
  44. 44,0 44,1 Browning G. F., Masukagami Y., Souza D. D. et al. Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations. // mSystemsASM, 2017. — ISSN 2379-5077doi:10.1128/MSYSTEMS.00055-17PMID:29034329
  45. Gupta R. An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits // Front. Plant Sci.Frontiers Media, 2016. — ISSN 1664-462Xdoi:10.3389/FPLS.2016.00994PMID:27458475
  46. 46,0 46,1 Liu F., Meng Y., He K. et al. Comparative analysis of proteomic and metabolomic profiles of different species of Paris // Journal of ProteomicsElsevier BV, 2019. — ISSN 1874-3919; 0165-022Xdoi:10.1016/J.JPROT.2019.02.003PMID:30890455
  47. Sokołowska K., Niittylä T., Hvidsten T. R. et al. A metabolite roadmap of the wood-forming tissue in Populus tremula // New PhytologistLondon: Wiley-Blackwell, 2020. — ISSN 0028-646X; 1469-8137doi:10.1111/NPH.16799PMID:32648607
  48. Le S. Transcriptomic and Metabolomics Profiling of Phage-Host Interactions between Phage PaP1 and Pseudomonas aeruginosa // Frontiers in microbiologyFrontiers Media, 2017. — ISSN 1664-302Xdoi:10.3389/FMICB.2017.00548PMID:28421049
  49. Tian S., Wang C., Li Y. et al. The impact of slyA on cell metabolism of Salmonella Typhimurium: a joint study of transcriptomics and metabolomics // J. Proteome Res. / J. YatesACS, 2020. — ISSN 1535-3893; 1535-3907doi:10.1021/ACS.JPROTEOME.0C00281PMID:32969666
  50. Steinbeck C., Beisken S., Salek R. M. et al. Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants // Scientific Data / Veronique van den Berghe, S. Sansone, V. HurstMacmillan Publishers, NPG, 2014. — ISSN 2052-4463doi:10.1038/SDATA.2014.29PMID:25977786
  51. Garcia P. G., Zanotta S., Eberlin M. N. et al. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants // MoleculesMDPI, 2018. — ISSN 1420-3049; 1431-5157doi:10.3390/MOLECULES23123330PMID:30558273
  52. Fiore C. L., Longnecker K., Melissa C Kido Soule һ.б. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631. // Environmental MicrobiologyWiley-Blackwell, 2015. — ISSN 1462-2912; 1462-2920doi:10.1111/1462-2920.12899PMID:25970745
  53. Kopka J., Schwarz D., Huege J. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. // Plant Physiol.American Society of Plant Biologists, 2008. — 12 p. — ISSN 0032-0889; 1532-2548doi:10.1104/PP.108.129403PMID:18945936
  54. Wilinski D., Freddolino P. L. Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster // Nat. Commun. / J. D. HeberNPG, 2019. — ISSN 2041-1723doi:10.1038/S41467-019-11933-ZPMID:31492856
  55. Anjaritha A R Parijadi, Ridwani S., Dwivany F. M. et al. A metabolomics-based approach for the evaluation of off-tree ripening conditions and different postharvest treatments in mangosteen (Garcinia mangostana) // MetabolomicsSpringer Science+Business Media, 2019. — ISSN 1573-3882; 1573-3890doi:10.1007/S11306-019-1526-1PMID:31054000
  56. Sun S., Guo Z., Fu H. et al. Based on the Metabolomic Approach the Energy Metabolism Responses of Oriental River Prawn Macrobrachium nipponense Hepatopancreas to Acute Hypoxia and Reoxygenation. // Frontiers in PhysiologyFrontiers Media, 2018. — ISSN 1664-042Xdoi:10.3389/FPHYS.2018.00076PMID:29686619
  57. 57,0 57,1 Fang J., Wong C. 6,8-Di-C-glycosyl flavonoids from Dendrobium huoshanense. // J. Nat. Prod.ACS, 2010. — ISSN 0163-3864; 1520-6025doi:10.1021/NP900252FPMID:20055483
  58. Aristilde L., Martínez C. E. Ecophysiological Study of Paraburkholderia sp. 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency // Appl. Environ. Microbiol.ASM, 2020. — ISSN 0099-2240; 1098-5336; 1070-6291doi:10.1128/AEM.01851-20PMID:33008817
  59. Goufo P., Cortez I. Dataset of levels and masses of lipid species in healthy, asymptomatic and symptomatic leaves of vitis vinifera L. 'Malvasia fina' affected by ESCA complex disease // DIBElsevier BV, 2020. — ISSN 2352-3409doi:10.1016/J.DIB.2020.106469PMID:33204780
  60. 60,0 60,1 Kuliev V. B., Gusarova N. V. Components of the fruit ofRosa nisami // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00574362
  61. CE T., MA E., EG B. Constituents of Cannabis sativa L. XVII. A review of the natural constituents // J. Nat. Prod.ACS, 1980. — ISSN 0163-3864; 1520-6025doi:10.1021/NP50008A001PMID:6991645
  62. Udvardi M. K., Kopka J., Erban A. Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus // Plant, Cell and Environment / A. AmtmannWiley-Blackwell, 2009. — ISSN 0140-7791; 1365-3040doi:10.1111/J.1365-3040.2009.02047.XPMID:19781009
  63. Redestig H., Hannah M. A., Kopka J. et al. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus // The Plant JournalWiley-Blackwell, 2007. — ISSN 0960-7412; 1365-313Xdoi:10.1111/J.1365-313X.2007.03381.XPMID:18047558
  64. Chen Y., Kasvandik S., Nielsen J. Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation // Nat. Commun. / J. D. HeberNPG, 2022. — ISSN 2041-1723doi:10.1038/S41467-022-30513-2PMID:35595797
  65. 65,0 65,1 D. Olennikov, Tankhaeva L. M., Nikolaeva G. G. et al. Biologically Active Compounds from Cacalia hastata Leaves. 2. Carotinoids and Chlorophylls // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1023/B:CONC.0000025481.49542.8D
  66. Tan A., Cunningham B., Eijkelkamp B. et al. Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model // Cell ReportsCell Press, Elsevier BV, 2022. — ISSN 2211-1247; 2639-1856doi:10.1016/J.CELREP.2021.110202
  67. Pucher G. W., Wakeman A. J., Vickery H. B. THE ORGANIC ACIDS OF RHUBARB (RHEUM HYBRIDUM) // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2021. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1016/S0021-9258(18)73892-1
  68. Pucher G. W., Clark H. E., Vickery H. B. THE ORGANIC ACIDS OF RHUBARB (RHEUM HYBRIDUM) // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2021. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1016/S0021-9258(18)74561-4
  69. Usenik V., Fabčič J., Štampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.) // Food Chem.Elsevier BV, 2008. — ISSN 0308-8146; 1873-7072doi:10.1016/J.FOODCHEM.2007.08.004
  70. Redzynia M., Sosnowska D., Podsędek A. et al. Comparison of in vitro anti-lipase and antioxidant activities, and composition of commercial chokeberry juices // International Journal of Food Research and TechnologySpringer Science+Business Media, 2015. — ISSN 1438-2377; 1431-4630; 1431-4649; 1438-2385doi:10.1007/S00217-015-2561-4
  71. Sójka M., Kołodziejczyk K., Milala J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products // Industrial Crops and ProductsElsevier BV, 2013. — ISSN 0926-6690; 1872-633Xdoi:10.1016/J.INDCROP.2013.08.051
  72. J. Šnebergrová, H. Čížková, E. Neradová et al. Variability of characteristic components of aronia // Czech Journal of Food ScienceCzech Academy of Agricultural Sciences, 2018. — ISSN 1212-1800; 0862-8653; 1805-9317doi:10.17221/540/2012-CJFS
  73. Allan D. L., Cook B. D., Rosen C. J. Nitrogen Form and Solution pH Effect on Organic Acid Content of Cranberry Roots and Shoots // Hortscience — 2019. — ISSN 0018-5345; 2327-9834doi:10.21273/HORTSCI.29.4.313
  74. Coppola E. D., Conrad E. C., Cotter R. High Pressure Liquid Chromatographic Determination of Major Organic Acids in Cranberry Juice // Journal of the Association of Official Analytical Chemists — 2020. — ISSN 0004-5756doi:10.1093/JAOAC/61.6.1490
  75. Seeram N. P. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. // J. Agric. Food Chem.USA: ACS, 2004. — ISSN 0021-8561; 1520-5118doi:10.1021/JF0352778PMID:15113149
  76. 76,0 76,1 A. Sattikulov, Sh. V. Abdullaev, É. Kh. Batirov et al. Organic acids ofAmmothamnus lehmannii // Chemistry of Natural CompoundsSpringer Science+Business Media, 2004. — ISSN 0009-3130; 1573-8388doi:10.1007/BF00575055
  77. Carbone V., Piacente S., Pizza C. et al. Investigation of the tuber constituents of maca (Lepidium meyenii Walp.). // J. Agric. Food Chem.USA: ACS, 2002. — 5 p. — ISSN 0021-8561; 1520-5118doi:10.1021/JF020280XPMID:12236688
  78. IUPHAR/BPS Guide to PHARMACOLOGY